登陆注册
3237100000003

第3章

此法的缺点是:先将代表复合数的齿全掰掉了。因为素数的存在是微弱地依附着较小素数及其倍数的复合数,而这点儿微弱的痕迹也给掰掉了。而这个问题,又不能从概率的办法解决,因为素数不是正态分析,而是一个确定的问题。所以他们就将x确定为一定值,再每两个齿一错位。这样,一个用有限问题企图解决无限问题,当然是极其困难的。尽管如此,仍有一些人在艰苦地攀登。所以后来,他们把大于某一个很大的数(例如k0=e49c)偶数,叫做大偶数,再将任一大偶数N(N>K0)写成自然数N1与N2之和,即N=N1+N2。而N1与N2里素因数这个数,分别不多于s与t个。故简记为(s,t),或写成带引号的加法:“s+t”,此时N1与N2可以叫做殆(接近)素数,然后将s与t值逐步缩小。如果一旦将s,t均计算到1,那时再来证明5×108Ne49 c时,(1,1)成立。这样,(1,1)问题即解决了。但是,至今没有最后解决。现将当前世界取得的名次结果,列表如下:

(s,t)年代结果获得者国别

(9,9)1920布龙挪威

(7,7)1924雷特马赫德

(6,6)1932埃司特曼英

(5,7),(4,9)1937蕾西意

(3,15),(2,366)1937蕾西

(5,5)1938布赫夕太勒前苏联

(4,4)1940布赫夕太勒

(1,C很大)1948瑞尼匈

(3,4)1956王元中

(3,3),(2,3)1957王元

(1,5)1962潘承洞中

巴尔巴恩前苏联

(1,4)1962王元

(1,4)1963潘承洞

巴尔巴恩

(1,3)1963布赫夕太勒

(小)维诺格拉朵夫前苏联

波皮里意

(1,2)1973陈景润中

按照华林原来的猜测,g(2)=4,g(3)=9,g(4)=19。一般地猜测:

g(k)=2k+〔(x)k〕-2(1)

其中〔x〕表示x的整数部分。

经过许多数学家的努力,除去k=4外,(1)已被证明,其中g(5)=37是我国科学家陈景润于1964年证明的。

对于k=4,目前已经证明:

19g(4)21,

并且在n10310或n>101409时,n可以表示为19个4次方的和。这已经接近于预期的目标g(4)=19了。

人们还发现,当自然数充分大时,可以将它表为G(k)个K次幂的和,这里G(k)g(k)。实际上,G(k)比g(k)小得多(当k大的时候)。目前仅仅知道G(2)=4,G(4)=19。对G(k)进行估计是一个很艰难的问题。

回数猜想

一提到李白,人们都知道这是我国唐代的大诗人,如果把“李白”两个字颠倒一下,变成“白李”,这也可以是一个人的名字,此人姓白名李。像这样正着念、反着念都有意义的语言叫做回文,比如“狗咬狼”、“天和地”、“玲玲爱毛毛”,一般说来,回文是以字为单位的,也可以以词为单位写回文,回文与数学里的对称非常相似。

如果一个数,从左右两个方向来读都一样,就叫它为回文数,比如101,32123,9999等都是回文数。

数学里有个有名的“回数猜想”,至今没有解决,取一个任意的十进制数,把它倒过来,并将这两个数相加,然后把这个和数再倒过来,与原来的和数相加,重复这个过程直到获得一个回文数为止。

例如68,只要按上面介绍的方法,三步就可以得回文数1111。

68+86154+451605+5061111

“回数猜想”是说:不论开始时采用什么数,在经过有限步骤之后,一定可以得到一个回文数。

还没有人能确定这个猜想是对的还是错的,196这个三位数可能成为说明“回数猜想”不成立的反例,因为用电子计算机对这个数进行了几十万步计算,仍没有获得回文数,但是也没有人能证明这个数永远产生不了回文数。

数学家对同时是质数的回文数进行了研究,数学家相信回文质数有无穷多个,但是还没有人能证明这种想法是对的。

数学家还猜想有无穷个回文质数时,比如30103和30203,它们的特点是,中间的数字是连续的,而其他数字都是相等的。除11外必须有奇数个数字,因为每个有偶数个数字的回文数,必然是11的倍数,所以它不是质数,比如125521是一个有6位数字的回文数,按着判断能被11整除的方法:它的所有偶数位数字之和与所有奇数位数字之和的差是11的倍数,那么这个数就能被11整除,125521的偶数位数字是1,5,2;而奇数位数字是2,5,1,它们和的差是(1+5+2)-(2+5+1)=0,是11的倍数,所以125521可以被11整除,且125521÷11=11411。

因而125521不是质数。

在回文数中平方数是非常多的,比如,

121=112,

12321=1112,

1234321=11112,

……

12345678987654321=1111111112,

你随意找一些回文数,平方数所占的比例比较大。

立方数也有类似情况,比如,1331=113,1367631=1113

这么有趣的回文数,至今还存在着许多不解之谜。

冰雹猜想

30多年前,日本数学家角谷静发现了一个奇怪的现象:一个自然数,如果它是偶数,那么用2除它;如果商是奇数,将它乘以3之后再加上1,这样反复运算,最终必然得1。

比如,取自然数N=6,按角谷静的作法有:6÷2=3,3×3+1=10,10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,从6开始经历了3→10→5→16→8→4→2→1,最后得1。

找个大数试试,取N=16384。

16384÷2=8192,8192÷2=4096,4096÷2=2048,2048÷2=1024,1024÷2=512,512÷2=256,256÷2=128,128÷2=64,64÷2=32,32÷2=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,这个数连续用2除了14次,最后还是得1。

这个有趣的现象引起了许多数学爱好者的兴趣,一位美国数学家说:“有一个时期,在美国的大学里,它几乎成了最热门的话题,数学系和计算机系的大学生,差不多人人都在研究它。”人们在大量演算中发现,算出来的数字忽大忽小,有的过程很长,比如27算到1要经过112步,有人把演算过程形容为云中的小水滴,在高空气流的作用下,忽高忽低,遇冷成冰,体积越来越大,最后变成冰雹落了下来,而演算的数字最后也像冰雹一样掉下来,变成了1!选数学家把角谷静这一发现,称为“角谷猜想”或“冰雹猜想”。

这一串串数难道一点规律也没有吗?观察前面作过的两串数:

6→3→10→5→16→8→4→2→1;

16384→8192→4096→2048→1024→512→256→128→64→32→16→8→3→2→1。

最后的三个数都是4→2→1。

为了验证这个事实,从1开始算一下:

3×1+1=4,4÷2=2,2÷2=1。结果是1→4→2→1,转了一个小循环又回到了1,这个事实具有普遍性,不论从什么样自然数开始,经过了漫长的历程,最终必然掉进4→2→1这个循环中去,日本东京大学的米田信夫对从1到10995亿1162万7776之间的所有自然数逐一做了检验,发现它们无一例外,最后都落入了4→2→1循环之中!

计算再多的数,也代替不了数学证明。“角谷猜想”目前仍是一个没有解决的悬案。

其实,能够产生这种循环的并不止“角谷猜想”,下面再介绍一个:

随便找一个四位数,将它的每一位数字都平方,然后相加得到一个答数;将答数的每一位数字再都平方,相加……一直这样算下去,就会产生循环现象。

现在以1998为例:

12+92+92+82=1+81+81+64=227,

22+22+72=4+4+49=57,

52+72=25+49=74,

72+42=49+16=65,

62+52=36+25=61,

62+12=36+1=37,

32+72=9+49=58,

52+82=25+64=89。

下面再经过八步,就又出现89,从而产生了循环:

千古之谜

现代数论的创始人、法国大数学家费尔马(1601-1665),对不定方程极感兴趣,他在丢番图的《算术》这本书上写了不少注记。在第二卷问题8“给出一个平方数,把它表示为两个平方数的和”的那一页的空白处,他写道:“另一方面,一个立方不可能写成两个立方的和,一个四方不可能写成两个四方的和。一般地,每个大于2的幂不可能写成两个同次幂的和。”

换句话说,在n>2时,

xn+yn=zn(1)

没有正整数。这就是举世闻名的费尔马大定理。

“关于这个命题”,费尔马说:“我有一个奇妙的证明,但这里的空白太小了,写不下。”

人们始终未能找到弗尔马的“证明”。很多数学家攻克这座城堡,至今未能攻克。所以,费尔马大定理实际上是费尔马大猜测。人们在费尔马的书信与手稿中,只找到了关于方程

x4+y4=z4(2)

无正整数解的证明,恐怕他真正证明的“大定理”也就是这n=4的特殊情况。

既然(2)无正整数解,那么方程

x4k+y4k=z4k(3)

无解(如果(3)有解,即有正整数x0,y0,z0使

x04k+y04k=z04k(3)

那么(x0k)4+(y0k)4=(z0k)4

这与(2)无解矛盾!

同理,我们只要证明对于奇素数P,不定方程

xp+yp=zp(4)

无正整数解,那么费尔马大定理成立(因为每个整数n>2,或者被4整除,或者有一个奇素数p是它的因数)。

(4)的证明十分困难。在费尔马逝世以后90多年,欧拉迈出了第一步。他在1753年8月4日给哥德巴赫的信中宣称他证明了在p=3时,(4)无解。但他发现对p=3的证明与对n=4的证时截然不同。他认为一般的证明(即证明(4)对所有的素数p无正整数解)是十分遥远的。

一位化名勒布朗的女数学家索菲·吉尔曼(1776-1831)为解费尔马大定理迈出了第二步。她的定理是:

“如果不定方程x5+y5=z5有解,那么5|xyz。”

人们习惯把方程(4)的讨论分成两种情况。即:如果方程xp+yp=zp无满足p|xyz的解,就说对于p,第一种情况的费尔马大定理成立。

如果方程xp+yp=zp无满足p|xyz的解,就说对于p,第二种情况的费尔马大定理成立。

因此,吉尔曼证明了p=5,第一种情况的费尔马大定理成立。她还证明了:如果p与2p+1都是奇素数,那么第一种情况的费尔马大定理成立。她还进一步证明了对于100的奇素数p,第一种情况的费尔马大定理成立。

在欧拉解决p=3以后的90余年里,尽管许多数学家企图证明费尔马大定理,但成绩甚微。除吉尔曼的结果外,只解决了p=5与p=7的情况。

攻克p=5的荣誉由两位数学家分享,一位是刚满20岁、初出茅庐的狄利克雷,另一位是年逾70已享盛名的勒仕德。他们分别在1825年9月和11月完成了这个证明。

p=7是法国数学家拉梅在1839年证明的。

这样对每个奇素数p逐一进行处理,难度越来越大,而且不能对所有的p解决费尔马大定理。有没有一种方法可以对所有的p或者至少对一批p,证明费尔马大定理成立呢?德国数学家库麦尔创立了一种新方法,用新的深刻的观点来看费尔马大定理,给一般情况的解决带来了希望。

库麦尔利用理想理论,证明了对于p100费尔马大定理成立。巴黎科学院为了表彰他的功绩,在1857年给他奖金3000法郎。

库麦尔发现伯努列数与费尔马大定理有重要联系,他引进了正规素数的概念:如果素数p不整除B2,B4……Bp-3的分母,p就称为正规素数,如果p整除B2,B4……Bp-3中某一个的分母就称为非正规素数。例如5是正规数,因为B2的分母是6而5×6。7也是正规素数,因为B2的分母是6,B4的分母是30,而7×6,7×30。

1850年,库麦尔证明了费尔马大定理对正规素数成立,这一下子证明了对一大批素数p,费尔马大定理成立。他发现在100以内只有37、59、67是非正规素数,在对这三个数进行特别处理后,他证明了对于p100,费尔马大定理成立。

正规素数到底有多少?库麦尔猜测有无限个,但这一猜测一直未能证明。有趣的是,1953年,卡利茨证明了非正规素数的个数是无限的。

近年来,对费尔马大定理的研究取得了重大进展。1983年,西德的伐尔廷斯证明了“代数数域K上的(非退化的)曲线F(x,y)=0,在出格g>1时,至多有有限多个K点。”

作为它的特殊情况,有理数域Q上的曲线xn+yn-1=0(5)在亏格g>1时,至多有有限多个有理点。

这里亏格g是一个几何量,对于曲线(5),g可用g=(n-1)(n-2)2来计算,由(6)可知在n>3时,(5)的亏格大于1,因而至多有有限多个有理点(x,y)满足(5)。

方程

xn+yn=2n

可以化成

x2n+y4n-1=0

改记x2,y2为(x,y),则(7)就变成(5)。因此由(5)只有有限多个有理数解x、y,立即得出(1)只有有限多个正整数解x、y、z,但这里把x、y、z与kx、ky、kz(k为正整数)算作同一组解。

因此,即使费尔马大定理对某个n不成立,方程(7)有正整数解,但解也至多有有限组。

1984年,艾德勒曼与希思布朗证明了第一种情况的费尔马大定理对无限多个p成立。他们的工作利用了福夫雷的一个重要结果:有无穷多个对素数p与q,满足q|p-1及q>p2/3个。而福夫雷的结果又建立在对克路斯特曼的一个新的估计上,后者引起了不少数论问题的突破。

现在还不能肯定费尔马大定理一定正确,尽管经过几个世纪的努力。瓦格斯塔夫在1977年证明了对于p125000,大定理成立。最近,罗寒进一步证明了对于p4100万,大定理成立。但是,费尔马大定理仍然是个猜测。如果谁能举出一个反例,大定理就被推翻了。不过反例是很难举的。

五家共井

我国最早提出不定方程问题,它由“五家共井”引起。古代,没有自来水,几家合用一个水井是常见的事。《九章算术》一书第8章第13题就是“五家共井”问题:

今有五家共井,甲二绠不足,如乙一绠;乙三绠不足,如丙一绠;丙四绠不足,如丁一绠;丁五绠不足,如戊一绠;戊六绠不足,如甲一绠。如各得所不足一绠,皆逮。问井深、绠长各几何!

用水桶到井中取水,当然少不了绳索,“绠”就是指“绳索”。原题的意思是:

五家共用一水井。井深比2条甲家绳长还多1条乙家绳长;比3条乙家绳长还多1条丙家绳长;比4条丙家绳长还多1条丁家绳长;比5条丁家绳长还多1条戊家绳长;比6条戊家绳长还多1条甲家绳长。如果各家都增加所差的另一条取水绳索,刚刚好取水。试问井深、取水绳长各多少?

虽然该问题是虚构的,它是最早的一个不定方程问题。

用现代符号,可设甲、乙、丙、丁、戊各家绳索长分别为x、y、z、u、v;井深为h。根据题意,可得2x+y=h,3y+z=h,4z+u=h,5u+v=h,6v+x=h。

这是一个含有6个未知数、5个方程的方程组。未知数的个数多于方程个数的方程(或方程组)叫不定方程。用加减消元法可得x=265721h,y=191721h,z=148721h,u=129721h,v=76721h。

给定h不同的数值,就可得到x、y、z、u、v的各个不同的数值。只要再给定一些特定条件,就可得到确定的组解。原书中只给出一组解,是最小正整数解。

我国古代数学家在《九章算术》的基础上,对不定方程作出了辉煌的成绩。“五家共井”问题是后来百鸡术及大衍求一术的先声。

“五家共井”问题,曾引起世界上很多数学家的注视。在西方数学史书中,把最早研究不定方程的功绩归于希腊丢番都。其实,他在公元250年左右才研究这些问题,要比我国迟200多年。

公元6世纪上半期,张丘建在他的《张丘建算经》中有一个百鸡问题:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏生,值钱一。凡百钱,买鸡百只。问鸡翁、母、雏各几何?

意思是,如果1只公鸡值5个钱;1只母鸡值3个钱;3只小鸡值1个钱。现用100个钱,买了100只鸡。问公鸡、母鸡、小鸡各多少?

设公鸡、母鸡、小鸡分别为x、y、z只,则可得不定方程消去z不难得出5x+3y+13z=100x+y+z=100消去z不难得出y=7x4因为y是正整数,所以x必须是4的倍数。

设x=4t,则y=25-7t,z=75+3t

x>0,4t>0,t>0;

又y>0,25-7t>0,t347

故t=1,2,3。

原方程组有三组答案:

{x=4,y=18,z=78 {x=8,y=11,z=81 {x=12,y=4,z=84

数学史家评论说,一道应用题有多组答案,是数学史上从未见到过的,百鸡问题开了先例。《张丘建算经》中没有给出解法,只说:“术曰:鸡翁每增四,鸡母每减七,鸡雏每益三,即得。”意思是:如果少买7只母鸡,就可多买4只公鸡和3只小鸡。因为7只母鸡值钱21,4只公鸡值钱20,两者相差3只小鸡的价格。只要得出一组答案,就可推出其余两组。但这解法怎么来的?书中没有说明。因此,所谓“百鸡术”即百鸡问题的解法就引起人们的极大兴趣。

稍后,甄鸾在《数术记遗》一书中又提出了两个“百鸡问题”,题目意思与原百鸡问题相同,仅数字有所区别。到了宋代,着名数学家杨辉在他的《续古摘奇算法》一书中,也引用了类似的问题:

“钱一百买温柑、绿桔、扁桔共一百枚。只云温柑一枚七文,绿桔一枚三文,扁桔三枚一文。问各买几何?”

到了明清时代,还有人提出了多于三元的“百鸡问题”。不过,各书均与《张丘建算经》一样,没有给出问题的一般解法。

7世纪时,有人对百鸡问题提出另一种解法,但只是数字的凑合。到了清代焦循在他的《加减乘除释》一书中指出其错误。之后,不断有人提出新的解法,但都没有完全得到普遍解决此类题目的通用方法。例如丁取忠在他的《数学拾遗》中给出一个比较简易的解法:先设没有公鸡,用100个钱买母鸡和小鸡共100只,得母鸡25只、小鸡75只。现在少买7只母鸡,多买4只公鸡和3只小鸡,便得第一组答案。同理可推出其余两组。直到19世纪,人们才把这类问题同“大衍求一术”结合起来研究。

百鸡问题是一个历史名题,在世界上有很大影响。国外常见类似的题目。

速度趣题

1.自行车和苍蝇

同类推荐
  • 记录身体成长轨迹(培养学生心灵成长的经典故事)

    记录身体成长轨迹(培养学生心灵成长的经典故事)

    在这套丛书里,我们针对青少年的心理特点,专门选择了一些特殊的故事,分别对他们在这一时期将会遭遇的情感问题、生活问题、学习问题、交友问题以及各种心理健康问题,从心理学的角度进行剖析和讲解,并提出了解决问题的方法和措施,以供同学们参考借鉴。
  • 指导学生心理健康的经典故事:赢在人生的起跑线

    指导学生心理健康的经典故事:赢在人生的起跑线

    每个人都在梦想着成功,但每个人心中的成功都不一样,是鲜花和掌声,是众人羡慕的眼神,还是存折上不断累积的财富?其实,无论是哪一种成功,真正需要的都是一种健康的心理。有了健康的心理才是成功的前提与保证,在人的一生中,中学是极其重要的一个阶段,心理健康对以后的健康成长非常重要。
  • 柳林中的风声(语文新课标课外必读第十二辑)

    柳林中的风声(语文新课标课外必读第十二辑)

    语文新课标指定了中小学生的阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高广大学生的阅读写作能力,培养语文素养,促进终身学习等具有深远的意义。
  • 用心爱:中小学教师师德修养漫谈

    用心爱:中小学教师师德修养漫谈

    本书紧扣《规范》的基本精神,结合新形势下经济、社会和教育发展对中小学教师应有的道德品质和职业行为的基本要求,解读《规范》修订的基本原则以及内容体系,重点解读六条师德规范的内涵,疏理其间的逻辑关系,构成教师职业道德理论体系。
  • 哈佛家训(黄金版)

    哈佛家训(黄金版)

    《哈佛家训(黄金版)》通过讲述一个个真实生动、富含哲胖的名人故事,启迪孩子的智慧,引发孩子的思考,激励孩子以坚韧的毅力、乐观的心态上挑战未来,赢得成功。如果此书是灯,希望能照亮青少年前行的路。如果此书是路,希望能引领青少年走向理想之路。
热门推荐
  • 丑颜弃妇闯情关

    丑颜弃妇闯情关

    ”穿越千年庆云国:“平凡,你让我无比厌恶。正想一掌打过去,现代某都市:“林夷如,他靠近她的耳畔说的下一句话让她彻底呆了,“也不看看自己是什么货色,激不起本王的半点兴趣,还想用这招;如果是个美人,我喜欢你,本王还可以勉强,不过,我们交往吧。”--情节虚构,”她早就火冒三丈,请勿模仿
  • 无敌大小姐

    无敌大小姐

    当现代阴狠毒辣,手段极多的火家大小姐火无情,穿越到一个好色如命,花痴草包大小姐身上,会发生怎样的化学反应?火无情一醒过来就发现,自己竟然在众目睽睽之下上演脱衣秀。周围还有一群围观者。这一发现,让她极为不爽。刚刚穿好衣服,便看到一个声称是自家老头的老不死气势汹汹的跑来问罪。刚上来,就要打她。这还得了?她火无情从生自死,都是王者。敢动她的人,都在和阎王喝茶。于是,她一怒之下,打了老爹。众人皆道:火家小姐阴狠毒辣,竟然连老爹都不放在眼里。就这样,她的罪名又多了一条。蛇蝎美人。穿越后,火无情的麻烦不断。第一天,打了爹。第二天,毁了姐姐的容。第三天,骂了二娘。第四天,当众轻薄了天下第一公子。第五天,火家贴出招亲启事:但凡愿意娶火家大小姐者,皆可去火府报名。来者不限。不怕死,不想活的,欢迎前来。警示:但凡来此,生死皆与火家无关。若有残病者火家一律不负法律责任。本以为无人敢到,岂料是桃花朵朵。美男个个很妖娆一号美人:火无炎。火家大少爷。为人不清楚,手段不清楚。容貌不清楚。唯一清楚的是,他有钱。有多多的钱。火无情语录:钱是好东西。娶了。(此美男,由美瞳掩饰不了你眼神的空洞领养。)火老爷一气之下,昏了过去。家门不幸,家门不幸啊。二号美人:竹清月。江湖人称天上神仙,地上无月。大国师一枚。美得惊天动地。火无情语录:美人好,尤其是自带嫁妆又会预测未来的美人,娶了。(此美男,由东de琳琳领养)三号美人:轩辕子玉。当朝七皇子,游历四国。一张可爱无敌的脸。单纯至极。火无情语录:可爱的孩子好,可爱又乖巧的孩子更好。可爱乖巧又不用给钱的孩子,娶了。(此美男,由刘千绮领养)皇帝听闻,两眼一抹黑。他的儿啊。怎么就这么不争气呢。四号美人:天下第一美男。性格不详,籍贯不详。火无情语录:谜一样的美人,她喜欢。每天都有新鲜感。娶了。(此美男,由告别的爱情li领养。)五号美人:天下第一名伶。火无情语录:解风情的美男,如果没钱花把他卖了都不用调教。娶了。(此美男由伊眸领养。)六号美男:解忧楼楼主。相貌不详,身世不详。爱好杀人。火无情语录:凶恶的美人,她喜欢。娶了。(此美男由陈铭铭领养)七号美男:琴圣。貌如谪仙,琴音杀人。冷清眸子中,百转千回,说尽风流。(此美男由伊眸领养)夜杀:天下第一杀手。(此美男由静寂之夜领养)
  • 青少年励志成长丛书:努力自觉的激励

    青少年励志成长丛书:努力自觉的激励

    本书内容包括:对挫折的感悟、对爱心的感悟、对友情的感悟、对做事的感悟、对智慧的感悟、对品格的感悟、对自信的感悟等。
  • 傻子王爷无情妃

    傻子王爷无情妃

    一只毒蝎子,彻底断送了她年轻的生命!别人只知道,那个软弱没主见的女人被迫嫁给一个痴傻呆闷的七皇子。殊不知,她早已不再是“她”!面对痴傻只会憨笑的美男,她气愤难填!你傻,本美女就医好你,谁知医好后,遭到嫌弃,却换来一纸休书,气愤之下,她恨不得与他同归于尽……
  • 盛宠庶妃

    盛宠庶妃

    穿越成一名小小的庶女,秋明月既不自怨自艾,也不悲天悯人,而是悠闲的过着她的小日子。她的愿望很简单,只是保护母亲和弟弟平安长寿。可为毛那些人就不那么见不得她好呢?嫡母刻薄,处处找茬。嫡姐刁蛮,针锋相对。嫡妹伪善,处处算计。还有各位叔叔婶婶,堂姐堂弟堂兄堂妹,个个不省心。终于某一天,某女怒了。我靠,老虎不发威当老娘是病猫?嫡母陷害欲毁清白?我李代桃僵,让你抱着你的宝贝女儿在角落里哭吧。嫡姐颠倒黑白,强加罪名,欲害她失宠。我让你打掉牙往肚子里吞。嫡妹笑里藏刀,借刀杀人,我让你自食其果。姨娘算计、庶妹帮凶...小小宅院里每天上演不同好戏,热闹非凡。为了应付这一群三姑六婆,秋明月既费脑力又费心力,还得想尽办法求得圣旨把母亲升为平妻。好不容易松了一口气,天降厄运。什么?要她嫁人?嫁给荣亲王世子?那个从六岁起就坐在轮椅上据说活不过二十岁且不举的残废?可嫁过去她才发现并不是那么回事。王妃面善心恶,不怀好意。太妃精明狡诈,心思狠毒。大伯心机深沉,欲夺权位。妯娌小姑小叔冷眼相对,各谋算计,处处打压...这些也就罢了,可...妖孽夫君不举?我靠,谁说的?那老娘肚子里的孩子哪儿来的?他身中剧毒活不过二十岁?我靠,那抱着她的人是谁?精彩片段一:“世子,世子妃的嫡母要对她施以家法。”“来人,砍了那女人的手。”某人满面黑线!!!!!!!!又一日。“世子,世子妃不小心打碎了王妃精心培育的墨菊。”“嗯,母亲闻起来就说是我打碎的。”“...”“哦,对了,派人到宫中去说一声。我记得上次苏州太守进贡的一盆凤凰振羽,既然世子妃喜欢,就去内务府吩咐一声。”某人嘴角抽搐,“可那凤凰振羽已经被皇上赏给淑妃娘娘了...”“告诉淑妃,那盆花本世子要了。”某人风中凌乱了!!!!!!!!!精彩片段二:某侍卫急匆匆而来,“世子,太妃说要给你选侧妃,人已经在门外了。”“赶走。”“可是...”“滚!”一块砚台瞬间飞了出去。侍卫堪堪躲过,擦去额头上的汗珠。“世子妃听说后带着丫鬟回娘家了...”话还未说完,眼前一阵风闪过。眼前哪还有人影?精彩片段三:太后寿宴,琳琅满目,觥筹交错,酒过三巡,邻国皇子提出和亲。“陛下仰承天恩,仁义天下,我皇敬重,愿与大昭联姻,结为秦晋之好,永不开战。”大昭朝臣面露喜色,皇上面色不改,眼中含笑。
  • 凤舞霓裳:绝色太子妃

    凤舞霓裳:绝色太子妃

    【推荐新书】独家挚爱:神秘帝少高冷妻平天下,笑群雄,凤舞九州落苍穹;醉红尘,定四海,霓裳飘动翔八荒。她是亡国帝女,身负一身血海深仇,却偏偏遇见了他,从此收敛锋芒,只为伴他一世相守。他是强国之王,肩担统一天下重任,怎奈何邂逅了她,甘愿画地为牢,只为护她一生安好。江湖乱,儿女情长,又何惧血雨腥风?烽烟起,硝烟弥漫,又何妨四方征战?片段一:“国仇家恨,我定要报,谁都阻挡不了我。”“若是你的心愿,那就是我的责任,我不介意替你手刃仇人。”“却是为何?”“我愿为你挡去所有风雨,只为还你纯净无暇。”片段二:“为何你能认出我?”“因为是你,因为是我,便是于千万人中我也同样能够认出你。”“有你,真好。”
  • 越玩越成功

    越玩越成功

    人类的生命成长是一个认识自我、改变自我、超越自我的过程。只有真正地、全面地认识了自己,才会改变自我、超越自我,所以认识自我是实现自我发展的前提和基础。然而,认识自我是十分艰难的。如何才能破解心灵的密码,使自己能够清晰地认识自己呢?心理测试其实就是一把打开心门的金钥匙,它可……
  • 犀利贼宝:邪魅爹地呆萌娘亲

    犀利贼宝:邪魅爹地呆萌娘亲

    作为上古的一只魅萌九尾狐妖,她觉得,把儿子看好自己修炼好就行了,其他的——略过!于是,当神秘男人出现时,儿子撅着屁股跑来问,“娘亲,他说是我爹,你怎么看?”某人媚眼一抛,无辜开口,“这还不简单?你不会打雷闪电吗?电死他!”于是乎,萌娃挂着肥脸挤着小眼一转身,四周青雷滚滚,电闪雷鸣,眨眼间一爆炸头型的面瘫男立现,顿时怒吼:“臭小子,想造反啊?我可是你爹!”某宝挑眉,幽幽道:“我娘说了,三条腿的蛤蟆不好找,两条腿的男人多得是!要找也要找个色香味俱全的!你都烧焦了,不能要!”
  • 嫁个绝色相公

    嫁个绝色相公

    月黑风高的夜晚,静的只剩下风声。我小心翼翼的走在林间的小道上,一手拿着手枪,一拿紧紧将重要的宝物搂在怀中。这件宝物,只是一副画而已。但是,这副画却已经有几千年的历史,价值数亿元。可是,这副画现在确在我的手上,呵呵,没错,我是一个小偷……兼杀手。要说我的师傅是谁嘛?保密。要问我是哪个组织嘛?我是自由人士,无门无派。……
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。