登陆注册
3237100000002

第2章

0168之谜

将长为L的线段分为两部分,使其中一部分对于全部的比等于另外一部分对于这部分的比。即x∶L=(L-x)∶x,这样的分割称为“黄金分割”,又叫“黄金律”、“中外比”。

解上述比例,可求得x/L=0168。

自古希腊始,人们就认为1∶0168这种比在造型艺术中具有美学价值,如在工艺美术和日常生活用品的长和宽的设计中运用这种比例易引起美感。我国着名数学家华罗庚运用“黄金分割”创造了优选法,对促进我国的现代化建设起了十分重要的作用。

黄金数

用代数解方程的知识可以求得中外比的比值。

设线段全长AB=a,大段AP=x,则小段BP=a-x,

于是,a-xx=xa

即x2+ax-a2=0

x-a±5a2

舍去负根,得x=5-12a

因此,xa=5-12a

这就是说,中外比的比值为5-12

中外比的比值,叫做“黄金数”,用记号g表示。请记住:

g=5-12。

由于5=2236……所以g=0618。

黄金分割法

2000多年前,古希腊的柏拉图派学者欧多克斯,首先使用规尺分已知线段为“黄金分割”,他的作法如下:

1过B点,作BCAB,而且使BC=12AB;

2连AC;

3以C为圆心,CB为半径作圆弧,交AC于D;

4以A为圆心,AD为半径作圆弧交线段AB于P,则P点分AB成黄金分割。

这个作法十分简便,证明也很容易。

设AB=a,则BC=a2,由勾股定理可知:

AC=AB2+BC2=a2+(a2)=52a;

AD=AC-DC=52a-a2=5-12a;

AP=AD=5-12a。

这就证明了,P点分AB成黄金分割。

这个作图方法,叫做“黄金分割法”,P点为“黄金分割点”。

辗转分割

设点P1将线段AB分成黄金分割,即BP1∶AP1=g;

取AB中点O,作点P1关于点O的对称点P2,则点P2有下述重要性质:

1.点P2也将线段AB分成黄金分割。

这是因为:

AP2=BP1,BP2=AP1,

AP2∶BP2=BP1∶AP1=g,

所以点P2也分AB成黄金分割由此可知,每条线段有两个黄金分割点。

2.点P2还分线段AP1成黄金分割。

证明如下:由于BP1∶AP1=g,而AP2=BP1,

所以AP2∶AP1=g,这就说明P2分AP1成黄金分割。

3.作P2,关于线段AP1中点的对称点P3,则AP3将AP2黄金分割。如此继续利用对称,辗转相割,可以得到一系列的黄金分割点。

黄金矩形

国外,有位画家举办过一次画展,所有的画面都是不同比例的矩形,有的狭长,有的正方。据统计数字表明,观众最喜爱的宽与长之比为g的矩形画面。人们称这种矩形为“黄金矩形”。

黄金矩形有个奇特的性质,如果矩形ABCD是黄金矩形,即DA∶AB=g,在它的内部截去一个正黄金矩形。这个过程继续下去,还可以得到一系列的黄金矩形。这个美妙的结论,请你自己证明吧。

神秘的“5”

“5”这个数,在日常生活中到处可见,钞票面值有5元、5角、5分;秤杆上,表示5的地方刻有一颗星;在算盘上,一粒上珠代表5;正常情况下,人的每只手有5个手指,每只脚有5个脚趾;不少的花,如梅花、桃花都有5个花瓣;海洋中的一种色彩斑斓的无脊椎动物海星,它的肢体有5个分叉,呈五角星状。

总之,“5”这个数无所不在。当然数学本身不能没有它。

在数学上,只有5种正多面体——正四面体、正六面体(立方体)、正八面体、正十二面体与正二十面体。5阶以下的有限群一定是可交换群;一般的二次、三次和四次代数方程都可以用根式求解,但一般的五次方程就无法用根式来求解。5还是一个素数,5和它前面的一个素数3相差2,这种差2的素数在数论中有个专门名词叫孪生素数。人们猜测孪生素数可能有无穷多,而3和5则是最小的一对孪生素数。

前些年,美国数学家马丁·加德纳曾描述过一个有趣的人物——矩阵博士。

这位博士是个美国人,他的妻子是日本人,但早已亡故,只留下一个混血种的女儿伊娃。他们父女二人相依为命,博士常带着女儿漂洋过海,闯荡江湖,在世界各地都有他们的足迹。

博士对数论、抽象代数有许多精辟之见。虽然他说的话乍一听似乎荒诞不经,可拿事实去验证他所说的离奇现象与规律时,却又发现博士的“预言”都是正确的。

有一次,博士来到印度的加尔各答。他说古道今,大谈“无所不在的5”。

博士指出,在印度的寺庙里,供奉着许多降魔金刚,信仰这些金刚的教派之中心教义一共有5条,其中一条是所谓宇宙的永劫轮回说,即认为宇宙经过5百亿年的不断膨胀后,又要经过5百亿年的不断收缩,直到变成一个黑洞,然后又开始下一轮的膨胀与收缩。如此周而复始,循环不已。降魔金刚手中,还拿着宇宙膨胀初期的“原始火球”呢!在这里,博士曾几次提到5这个数字。

向克斯曾把π的小数值算到707位,以前这被认为是一项了不起的工作。自从近代电子计算机发明以后,他的工作简直不算一回事了。现在π值的记录一再被打破,最新的记录是100万位,这是由法国人计算出来的。有意思的是,矩阵博士在这项计算以前,就作了大胆的预言,他说第100万位数必定是个5,结果真是如此!这究竟是用什么办法知道的呢?博士却秘而不宣。

循环往复的周期现象,在科技史上曾起过重大作用,门捷列夫发现元素周期表,就是突出的一例。下面请读者来看一下与5有关的有趣现象。

请任选两个非0的实数,如π与76,并准备一个袖珍电子计算器。假定计算器数字长八位,那么,π的八位数值是31415926。现在请把第二数76加上1作为被除数,把第一个数π作为除数做一下除法,即:

(76+1)÷31415926=24509861我们把显示在计算器上的24509861称为第三数,然后再重复上述过程,把第三数加上1,把第二数作为除数,这就得到了第四位数:0335656,依次类推,可得到第五数、第六数……

也许读者会认为,这些数字都没有规律可循,照这样下去,真是“味同嚼蜡”。然而,当算到第六数时,你将会大吃一惊,原来第六数是31415931,略去这一数字后面二位因计算时四舍五人造成差异的小数,它竟和第一数的π相等,π又回来了!如果你还不太相信,不妨再挑选一些整数,结果保证令人满意。我们可以得出结论,5是一个循环周期,第六数与第一数完全一样,第七数与第二数完全一样……要知道,这一个秘密最初也是矩阵博士想到的呢!

我们且不去计较矩阵博士是否真有其人,可是这神奇的、无所不在的5,却不能不引起人们的极大兴趣,引诱人们去探索和研究。

最大的质数是多少?

小朋友们,你们在学校学习数学吧,有没有觉得数学很有趣呢?也许数学学起来有点难,但是很有用哦,比如说,学好了数学,你们陪爸爸妈妈到超市买东西的时候,就可以帮他们算价钱,看看怎样买更便宜,能替爸爸妈妈省下不少钱啦!

在学校里,数学老师会教小朋友们学习许多数学知识,知道自然数就是像1、2、3……这样的能数出来的数。那么质数是什么呢?质数是一类特殊的自然数,它们只能被自己和1整除。比如说,最小的质数是2,只能被它自己,也就是2,和1整除。接着有3、5、7、11等等,很多很多,小朋友们可以问一下爸爸妈妈或者你们的数学老师,他们会告诉你们的。

质数是一类很有意思的自然数,所以许多数学家都很喜欢研究它们。早在2500年前,古希腊有位着名的数学家欧几里德就仔细研究了质数。他证明质数是有无限多的,也可以无限大的,并且有些的质数可以是2n-1。看到这里,小朋友们一定很疑惑了,究竟这个2n-1是什么意思呢?小朋友们看到2的右上角有一个n对吧?这个拼音字母n可以代替任何的自然数,可以是1、2、5、12、38、59、104等等,随便你能数出来的任何一个。2n的意思就是有n个2相乘。比如说22就是2个2相乘,是4;23就是3个2相乘,就是2×2×2,是多少呢,对了,是8;算个难一点,25是多少呢?就是2×2×2×2×2=?背过九九表的小朋友也一定能算出来是32。这样的话,就不难理解2n-1了,是n个2相乘之后再减1。比如2n-1里n代替2的时候,22-1等于3;n代替3的时候,23-1等于7,3和7都是质数。有兴趣的小朋友可以耐心算一算,看看是不是。

说了这么多,那么究竟现在所知道的最大的质数是多少呢?科学家们算出来是224036583-1,就是说24036583(读作:两千四百零三万六千五百八十三)个2相乘之后再减1。这个数目非常非常大!举个例子来说,地球上每一粒砂子数一遍大概是2120,而16000×2120×2120×2120才大致跟这个质数相当,这样多数目的砂子就算是填满整个宇宙也不过用了很少很少的一部分。

小朋友们,我们人类存在于宇宙中,相比起宇宙来说,是相当的渺小;而我们人类运用的数字,却可以比宇宙巨大得多。数学是这样的富有魔力,不是么?

为什么要用60进制

由于生产、生活的需要,古代人对天文、历法进行了大量的研究工作,这样,就不得不牵涉到时间和角度了。如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。

公元前2100年左右,巴比伦时期的着作已经表明:当时的人们不仅以360天作为1年,而且把圆分成360度,把1度分成60分,把1分分成60秒。这样,1/2,1/3,1/4,1/5,1/6,1/10,1/12,1/15,1/20,1/30,1/60度(分)都可以化为整数了。这给研究天文和历法带来了极大的方便。

我们知道,60进位制与10进位制在本质上是相同的。但由于10进位制有其固有的缺陷,如10不能被3、4、6整除,而60进位制就不存在这些问题。

正因为60进位制(严格说来,是60退位制)有自己的优点,所以也就一直沿用到今天。

现在,数学、物理、航运等科学技术中仍然使用60进位制。数学上把“度”、“分”、“秒”分别记作“°”、“′”、“″”,一律标在数的右上角。时间单位“时”、“分”、“秒”也采用60进位制。如7时35分20秒,记作7:35′20″,这里,用“:”号代替了度的符号“°”。

三角形的108塔群

108塔位于宁夏青铜峡水库西面峻峭的山崖上,因塔数而得名,因此又称百八塔。百八塔座西朝东,背山面水,随山势凿石分阶而建,自上而下,按1、3、5、7……19奇数排列,构成了一个等边三角形的大型塔群。塔的底座为砖砌八角形顶弥座,塔身似覆钵,塔顶如宝珠,高2米左右,是一种实心喇嘛塔。最上一塔,形制特大,以下逐层按比例缩小,远望能观塔群全貌,很符合视线的透视原理,体现了古代匠师的聪明才智,真称得上是别具一格。传说,这里曾是穆桂英的“天门阵”、“点将台”。其实,108塔是佛家惯用之数,念佛108遍,数珠108颗,晓钟108响。这里的108塔,估计与佛教密宗《金刚顶经》中昆卢庶那108尊法身有关。但真正的缘由是什么,至今还是一个谜。

魔术数

1986年全国初中数学竞赛题第一题第3小题提到魔术数,原题是:将自然数N接写在每一个自然数的右面,如果得到的新数都能被N整除,那么N称为魔术数,在小于130的自然数中,魔术数的个数是。

乍看起来,问题较棘手,但认真分析,并不难解决。

大家在理解魔术数定义时,就注意这几个字:“接写”、“每一个”(即任何一个),“都能”。

例如,把偶数2接写在任何一个自然数右面得到的新数都是偶数,都能被2整除,所以2是魔术数。

怎样求魔术数呢?

设a为魔术数,把a接写在任何一个自然数x的右面得到的新数xa。

1若a为一位数,则xa=10x+a能被a整除,即对任何一个自然数x,10x都能被a整除,就是10应是a的倍数,则a只能是1,2,5共3个。

2若a为二位数,则xa=100x+a能被a整除,100应是a的倍数,a只能是10=1×10,20=2×10,25,50=5×10,共4个。

3若a为三位数,则xa=1000x+a能被a整除,1000应是a的倍数,a只能是100=1×102,125,200=2×102,250=25×10,500=5×102,共5个。

同理,若a为四位数,a只能是1000=1×103,2000=2×103,5000=5×103,1250=125×10,2500=25×102。

一般地,当a为n位数(n3)时,魔术数可用以下形式表示:

1×10n-1,2×10n-1,5×10n-1,25×10n-2125×10n-3。

这样,我们便可以求出小于任何给定的自然数的魔术数及其个数。小于130的魔术数共9个:1,2,5,10,20,25,50,100,125,小于10的魔术数为3个,小于100的魔术数为7个,小于1000的魔术数为12个,小于10000的魔术数为17个……

我们观察n位数的魔术数的个数:

当n=1时为3个;

当n=2时为4个;

当n=k(k3)时总是5个。

所以,n2时,n增加1,n位数的魔术数的个数就增加5个。或者说,n位数(n2)以内的魔术数的个数正好组成公差为5的等差数列:7,12,17,22,27,32……

最大的和最小的

(1)三个1,不另加任何数学运算符号,能写成的最大的数是什么?能写成的最小的数是什么?

(2)四个1,不另加任何数学运算符号,能写成的最大的数和最小的数是什么?

(3)三个2,不另加任何数学运算符号,能写成的最大的数和最小的数是什么?

(4)三个4,不另加任何数学运算符号,能写成的最大的数和最小的数是什么?

你在回答这些问题时会发现,它们都是需要仔细想一想才能正确回答的问题。

(1)很明显,111是最大数的,111=1是最小数。

(2)如果你从(1)的经验出发,以为1111是最大数,就错了。这里最大的数是1111。事实上,113=1331>1111,而1111比1111更要大得多。最小的数当然还是1111=1。

(3)不要以为222是最大数,相反,它却是最小的数。这里,最大的数是222=4194304。它比222或222都要大得多。

(4)你根据(3)可能以为444是最大的数,这又错了。这里的最大的数却是。因为444=4256。显然4256444(“”表示远远大于)。最小的数是444。

现在,你能不加任何运算符号,写出三个3,三个5,三个6……的最大数和最小数了吗?

“1+1”

1742年6月7日,当时还是中学教师的哥德巴赫,写信给当时侨居俄国彼得堡的数学家欧拉一封信,问道:“是否任何不小于6的偶数,均可表为两个奇素数之和?”因为哥德巴赫喜欢搞拆数游戏。20几天后,欧拉复信写道:“任何大于6的偶数,都是两个奇素数之和。这一猜想,虽然我还不能证明它,但是我确信无疑地认为这是完全正确的定理。”这就是一直未被世人彻底解决的着名的哥德巴赫猜想,也称哥德巴赫-欧拉猜想。数学家简称这个问题为(1,1),或“1+1”。命题简述为:

(A)每一个6的偶数都可表为两个奇素数之和;

(B)每一个9的奇数都可表为三个奇素数之和。

显然,命题(B)是(A)的推论。因为任何一个奇数,如减掉一个奇素数,当然就是偶数了。此时如能证明命题(A),当然命题(B)就得证了。但是,这两个问题没有可逆性。命题(B)在本世纪30年代,前苏联科学家依·维诺格拉朵夫创造了一系列估计指数和重要方法,从而使他在1937年,间接地证明了命题(B)。

1930年,会尼列尔曼用密率法证明了每一个自然数可以表为不超过k个素数的和,这时K是一个固定的自然数。开始定出的k=2+1010,很快就有人把它降为k=69。利用密率法得到的最好结果是k=18,即每一个自然数可以表为18个素数的和。这里说的每一个自然数,不是充分大的自然数。这是密率法独具的优点,用其他方法(圆法和筛法)只能得出关于充分大的自然数的结论。

1937年,前苏联数学家维纳格拉道夫用圆法证明了每个充分大的奇素等于3个素数的和。随后有人证明这里的“充分大”可用“>eC16·038”来代替。这个数超过400万位,是一个非常巨大的数。现在这个常数已经大大缩小,但仍然是一个很可观的大数。

在240多年的漫长的岁月里,有人对哥德巴赫猜想进行了大量验算工作,有人曾经验算过偶数x5×188,即x在5亿以内,哥德巴赫猜想都是对的。

在此期间,有些人更想过一些办法,例如折叠法,他们将自然数比着很长的梳子上的各个齿,先将代表复合数的齿全部掰掉,剩下来的,当然都是素数。然后再把同样的梳子,颠倒过来对上,如果梳子上原有的齿为偶数x个,这样将1对着x-1,3对着x-3……p对着x-p,(1px-1)。因为在x较大时,不能证明是否还存在齿对着齿情况,故问题没有解决。

同类推荐
  • 青少年应知文学名著的故事(启迪青少年的语文故事集)

    青少年应知文学名著的故事(启迪青少年的语文故事集)

    本丛书重视语文的基础知识训练,选编了常用词语、好词好句、古文名句解读,谚语、歇后语集萃,还有语文趣味故事、语文之谜以及语文大家的故事等等,目的是使中小学生在快乐的阅读中逐步提高语文知识,增加文学素养,为将来走出社会自立人生打下坚实的基础。
  • 小神探智破疑案(青少年挖掘大脑智商潜能训练集)

    小神探智破疑案(青少年挖掘大脑智商潜能训练集)

    潜能是人类原本存在但尚未被开发与利用的能力,是潜在的能量。根据能量守恒定律,能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而转化和转移过程中,能的总量保持不变。
  • 汽车驾驶速成与禁忌

    汽车驾驶速成与禁忌

    《汽车驾驶速成与禁忌(新装畅销版)》是在全面透彻研究新《机动车驾驶证申领和使用规定》的基础上,针对汽车驾驶操作技能和驾驶证考试实际需要,以全新的思路、科学的理念,向广大爱车族全面介绍了汽车驾驶基础动作的练习方法和有关道路交通管理常识;并以丰富的汽车驾驶教学经验,重点阐述了汽车驾驶的操作技巧,从而使初学者能迅速掌握汽车驾驶技术,达到事半功倍的效果。在编写过程中,尽量以图解形式,力求通俗易懂、便于理解和掌握。《汽车驾驶速成与禁忌(新装畅销版)》适用于准备学车、正在学车或新驾驶员自学,并可以作为汽车驾驶学校的教材,是爱车族学习开车的良师,是独立驾驶、保证安全的助手,是提高技能、步人高手的阶梯。
  • 自巴黎一路南下

    自巴黎一路南下

    一段纸上的环球旅行,世界多国留学生携手旅外青春作家带你体验别样的留学生活和异国游历奇遇。在法国:难忘法国童话般的小镇,邂逅小镇里那个男子;在美国:开车穿越传说中的66号公路,遭遇惊悚的hitchhiker;在日本:一品浪漫的京都小雪;在德国:柏林墙头,一段穿越时光的生死恋;在俄罗斯:体会一个人在异国的独立生活;在印度:亚穆纳河波澜不惊的缓缓流过,有穿着红袍的印度女人,颈子里带着金色的项圈,咖啡色的皮肤美丽的暴露在阳光里,映着亚穆纳河波光粼粼的流水,闪耀的眸子带着夺人的亮光……
  • 让身心与梦想齐飞(培养学生心灵成长的经典故事)

    让身心与梦想齐飞(培养学生心灵成长的经典故事)

    在这套丛书里,我们针对青少年的心理特点,专门选择了一些特殊的故事,分别对他们在这一时期将会遭遇的情感问题、生活问题、学习问题、交友问题以及各种心理健康问题,从心理学的角度进行剖析和讲解,并提出了解决问题的方法和措施,以供同学们参考借鉴。
热门推荐
  • 吃垃圾也疯狂

    吃垃圾也疯狂

    这些是发生在冬天里的故事。主人公马飞飞和他的铁杆哥们在学校里、在公园里发生了一系列有趣的故事。本书囊括了知识情感、童趣搞笑和快乐烦恼交织的成长历程。相信你在不同的角度,能够找到自己成长的影子和发生在你身边的感动。
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 亿万宠儿:首席老公好坏坏

    亿万宠儿:首席老公好坏坏

    豪华游艇上,她被男朋友献给上司却阴差阳错走错房间上错床,醒来后疯狂逃窜。命运却让他们再度相遇,他是高高在上的大总裁,而她是一个要照顾生命母亲的穷学生。为救母亲,她代替姐姐嫁给了顾家少爷,没想到新郎却又是他!一次次她被命运开天大的玩笑。她一定要跑,一定要强,她是打不倒的小强……
  • lol之电竞天王

    lol之电竞天王

    注:本书献给这些日夜奋斗在LOL的人们,也是荒谬的!但张小明并没有放弃,没有放弃他的理想,而是继续努力,人生应该有理想,成为职业玩家是不现实的。通过挥洒青春,燃烧激情,成为一名电竞选手就是张小明的理想!然而,这是一个不被理解的时代,没有任何人会鼓励你去做一名职业的玩家,因为,在世人的眼里,朝着他的目标一步步迈进……
  • 朝三暮四

    朝三暮四

    如果你爱的那个人比你耀眼太多怎么办?努力的追赶,拼命的追赶,会不会在最后的时刻,依旧望而却步?萌女掀起追爱总动员,让你永远告别“练爱女”我用青春年少的执着,终于换来你此生的不离不弃以前他是她的全世界,现在他的全世界都是她。两小无猜的凌晨和白暮进入青春期后就以一种别扭的模式相处起来。聪明英俊的凌晨对待白暮陷入喜欢你就欺负你的傲娇模式。而迷糊欢乐的白暮对凌晨发过花痴、拉过小手,却在他终于鼓起勇气告白时慌张失措、又惊又怕,面对爱情彻底白目。你追我逃的感情征途因为误会笑料不断:她握住他的手,他吓得打翻饮料杯;他给她买零食,她以为他要哄基友。吃吃小醋,气气恋人;波澜不断,甜蜜酸楚。相似的校园,相似的你我,青春年华里的这对欢喜冤家,最终能否修成正果呢?
  • 站住,不准欺负我:抵债女友

    站住,不准欺负我:抵债女友

    一个是想爱不敢爱的鸵鸟女人,一个是优质到爆的强势男人。<br/>她因为生日的误会做了他的绯闻女友,结果惨兮兮签下了不平等女友条约,被迫着着全班的面送上香吻……<br/>最气人的是,她竟然对这个恶质的家伙动了心,结果N年之后不能摆脱……&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 暴力法神

    暴力法神

    以魔能为力量,分为武士和术士,武士擅长近战,术士擅长远攻,这几乎是千古以来的定律,但是因为一个人——黎阳,这一切的定律都不再是定律。武士?术士?近战?远攻?这些区分对我都没有用。我是术士,但是我也可以让对手尝试一下我的拳头!法神不暴力,好意思自称法神吗?身为一个古武者,就算是穿越到了异世界,也要沿袭古武者近战的风格!身为一个古武者,就算是被判定为远攻的术士,也要沿袭古武者暴力的风格!身为一个古武者,别人只拥有一种属性,我却是要拥有所有的属性……以身体为阵,收集六属性本源成为阵基,看黎阳怎么一边成为一个顶尖阵术士一边修炼成一代法神。