登陆注册
2379700000006

第6章 数学之谜(6)

所谓回数,就是一个数从左向右读和从右向左读都是一样,这样的数称之回数,如303,12821,88888……等都是回文式数,这种数在数中有无限多个。

对回数进行研究,得出一个回数猜想。此猜想到现在也没有解决。猜想是这样表白的:不论开始采用什么数,在经过有限的步骤后,一定可以得到一个回文式数。这个有限的步骤是这样的:任取一个数,再把这个数倒过来,并将这两个数相加。然后再把这个数倒过来,与原来的数相加。只要重复这个过程,就可以获得回文式数。

大家一看就知道,19394经过四步,就成了回文式数。数学家屡试屡对,无一例外。区别只有步骤多少。

直到今天,还没有人证明这个猜想是对还是错。有一个196,此数看看很简单,数学家用电子计算机对它进行了几十万步的计算,没有能获得回文式数,但计算机并没有证明它永远产生不了回文式数。

什么是“数学黑洞”?当写出一个任意的四位数(除四个数字完全一样的除外,例4444 7777等),再重新对其进行整理,从大到小的顺序重新排列,把最大的数当作千位数,接下来把次大的数当作百位数……依次类推。举例来说,如5477经过整理之后便是7754。接下来,把得到的这个数颠倒一下,然再求出这两个数的差(用大数减去小数,只看绝对值,不管正负号),然后,再对所得到的差数,把上述两个步骤再做一遍,于是又得到一个新的差数。

重复以上步骤,做不了几次,就会发现出现神秘的数6174。任何不完全相同的四位数,经过重排和求差运算之后,都会得出6174。它好像数的黑洞,掉进去就出不来。

为什么会出现这样有趣的黑洞数?这个难题困扰着数学界,尚需要数学家去探究其中的奥秘。

神奇的“角谷猜想”

三十多年前,日本数学家角谷静发现了一个奇怪的现象:一个自然数,如果它是偶数,那么用2除它;如果商是奇数,将它乘以3之后再加上1,这样反复运算,最终必然得1。

比如,取自然数N=6,按角谷静的作法有:6÷2:3,3×3+1=10÷10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷=2,2÷2=1,从6开始经历了3→10→5→16→8→4→2→1最后得1。

找个大数试试,取N=16384。

1384÷2=8192,8192÷2=4096,4096÷2=2048,2048÷2=1024,1024÷2=512,512÷2=256,256÷2=128,128÷2=64,64÷2=32,32÷2=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,这个数连续用2除了14次,最后还是得1。

这个有趣的现象引起了许多数学爱好者的兴趣,一位美国数学家说:“有一个时期,在美国的大学里,它几乎成了最热门的话题,数学系和计算机系的大学生,差不多人人都在研究它。”人们在大量演算中发现,算出来的数字忽大忽小,有的过程很长,比如27算到1要经过112步,有人把演算过程形容为云中的小水滴,在高空气流的作用下,忽高忽低,遇冷成冰,体积越来越大,最后变成冰雹落了下来,而演算的数字最后也像冰雹一样掉下来,变成了1!数学家把角谷静这一发现,称为“角谷猜想”或“冰雹猜想”。

把它叫猜想,是因为到目前为止,还没有人能证明出按角谷静的作法,最终必然得1。

这一串串数难道一点规律也没有吗?观察前面作过的两串数:

6→3→10→16→8→4→2→1

16384→8192→4096→2048→1024→512→256→128→64→32→16→8→4→2→1。

最后的三个数都是4→2→1。

为了验证这个事实,从1开始算一下:

3×1+1=4,4÷2=2,2÷2=1。

结果是1→4→2→1,转了一个小循环又回到了1,这个事实具有普遍性,不论从什么样自然数开始,经过了漫长的历程,几十步,几百步,最终必然掉进4→2→1这个循环中去,日本东京大学的米田信夫对从1到10995亿1162万7776之间的所有自然数逐一做了检验,发现它们无一例外,最后都落入了4→2→1循环之中!

计算再多的数,也代替不了数学证明。“角谷猜想”目前仍是一个没有解决的悬案。

其实,能够产生这种循环的并不止“角谷猜想”,下面再介绍一个:

随便找一个四位数,将它的每一位数字都平方,然后相加得到一个答数;将答数的每一位数字再都平方,相加……一直这样算下去,就会产生循环现象。

现在以1998为例:

1(上标2)+9(上标2)+9(上标2)+8(上标2)=1+81+81+64=227

2(上标2)+2(上标2)+7(上标2)=4+4+49=57

5(上标2)+7(上标2)+25+49=74

7(上标2)+4(上标2)=49+16=65

6(上标2)+5(上标2)=36+25=61

6(上标2)+5(上标2)=36+11=137

3(上标2)+7(上标2)=9+49=58

5(上标2)+8(上标2)=25+64=89

下面再经过八步,就又出现89,从而产生了循环:

捉摸不定的质数

一个大于1的整数,如果除了它本身和1以外,不能被其他正整数所整除,这个整数就叫做质数。质数也叫素数,如2、3、5、7、11等都是质数。

如何从正整数中把质数挑出来呢?自然数中有多少质数?人们还不清楚,因为它的规律很难寻找。它像一个顽皮的孩子一样,东躲西藏,和数学家捉迷藏。

古希腊数学家、亚历山大图书馆馆长埃拉托塞尼提出了一种寻找质数的方法:先写出从1到任意一个你所希望达到的数为止的全部自然数。然后把从4开始的所有偶数画掉;再把能被3整除的数(3除外)画掉;接着把能被5整除的数(5除外)画掉……这样一直画下去,最后剩下的数,除1以外全部都是质数。如找1~30之间的质数:

后人把这种寻找质数的方法叫埃拉托塞尼筛法。它可以像从沙子里筛石头那样,把质数筛选出来,质数表就是根据这个筛选原则编制出来的。

数学家并不满足用筛法去寻找质数,因为用筛法求质数带有一定的盲目性,你不能预先知道要“筛”出什么质数来。数学家渴望找到的是质数的规律,以便更好地掌握质数。

从质数表中可以看到质数分布的大致情况:

1到1000之间有168个质数;

1000到2000之间有135个质数;

2000到3000之间有127个质数;

3000到4000之间有120个质数;

4000到5000之间有119个质数。随着自然数的变大,质数的分布越来越稀疏。

质数把自己打扮一番,混在自然数里,使人很难以从外表看出它有什么特征。比如101、401、601、701都是质数,但是301和901却不是质数。又比如,11是质数,但111、11111以及由11个1、13个1、17个1排列成的数都不是质数,而由19个1、23个1、317个1排列成的数却都是质数。

有人做过这样的验算:

1(上标2)+1+41=43,

2(上标2)+2+41=47,

3(上标2)+3+41=53,

39(上标2)+39+41=1601。

从43到1601连续39个这样得到的数都是质数,但是再往下算就不再是质数了。

40(上标2)+40+41=1681=41×41,1681是一个合数。

被称为“17世纪最伟大的法国数学家”费马,对质数做过长期的研究。他曾提出过一个猜想:当n是非负整数时,形如f(n)=2(上标2n)+1的数一定是质数。后来,人们把2(上标2n)+1形式的数叫做“费马数”。

费马提出这个猜想当然不是无根据的。他验算了前5个费马数:

f(0)=2(上标2n)+1=2+1=3

f(1)=2(上标2n)+1=4+1=5

f(2)=2(上标2n)+1=16+1=17

f(3)=2(上标2n)+1=256+1=257

f(4)=2(上标2n)+1=65536+1=65537

验算的结果个个都是质数。塞马没有再往下验算。为什么没往下算呢?有人猜测再往下算,数字太大了,不好算。但是,就是在第6个费马数上出了问题!费马死后67年,也就是1732年,25岁的瑞士数学家欧拉证明了第6个费马数不再是质数,而是合数。

f(5)=2(上标25)+1=2(上标32)+14292967297=641×6700417

更有趣的是,从第6个费马数开始,数学家再也没有找到哪个费马数是质数,全都是合数。现在人们找到的最大的费马数是f(1495)=2(上标21945)+1,其位数多达10(上标10584)位,这可是个超级天文数字。当然尽管它非常之大,但也不是质数。哈哈,质数和费马开了个大玩笑!

在寻找质数方面做出重大贡献的,还有17世纪法国数学家。天主教的神父梅森。梅森于1644年发表了《物理数学随感》,其中提出了著名的“梅森数”。梅森数的形式为2(上标p)-1,梅森整理出11个P值使得2(上标p)-1至成为质数。这11个P值是2、3、5、7、13、17、19、31、67、127和257。你仔细观察这11个数不难发现,它们都是质数。不久,人们证明了:如果梅森数是质数,那么p一定是质数。但是要注意,这个结论的逆命题并不正确,即P是质数,2(上标p)-1不一定是质数,比如2(上标11)-1=2047=23×89,它是一个合数。

梅森虽然提出了11个p值可以使梅森数成为质数,但是,他对11个P值并没有全部进行验算,其中的一个主要原因是数字太大,难以分解。当p=2、3、5、7、17、19时,相应的梅森数为3、7、31、127、8191、13107、524287。由于这些数比较小,人们已经验算出它们都是质数。

1772年,历岁双目失明的数学家欧拉,用高超的心算本领证明了P=31的梅森数是质数:

还剩下P=67、127、257三个相应的梅森数,它们究竟是不是质数,长时期无人去论证。梅森去世250年后,19仍年在纽约举行的数学学术会议上,数学家科勒教授做了一次十分精彩的学术报告。他登上讲台却一言不发,拿起粉笔在黑板上迅速写出:

2(上标67)-1=147573952589676412927

=193707721×761838257287

然后就走回自己的座位。开始时会场里鸦雀无声,没过多久全场响起了经久不息的掌声。参加会议的人纷纷向科勒教授祝贺,祝贺他证明了第9个梅森数不是质数,而是合数!

1914年,第10个梅森数被证明是质数;

1952年,借助电子计算机的帮助证明了第11个梅森数不是质数。

以后,数学家利用速度不断提高的电子计算机来寻找更大的梅森质教。1996年9月4日,美国威斯康星州克雷研究所的科学家,利用大型电子计算机找到了第33个梅森质数,这电是人类迄今为止所认识的最大的质数,它有378632位:2(上标1257787)-1,同时发现了新的完全数:2(上标1257787-1×2(上标1257786)。

数学家尽管可以找到很大的质数,但是质数分布的确切规律仍然是一个谜。古老的质数,它还在和数学家捉迷藏呢!

古埃及遗题

《兰特纸草书》是古埃及人在4000年前的一本数学书,上面用象形文字记载了许多有趣的数学题,比如:

在7,7×7,7×7×7,7×7×7×7,7×7×7×7×7,……这些数字上面有几个象形符号:房子、猫、老鼠、大麦、斗,翻译出来就是:

“有7座房子,每座房子里有7只猫,每只猫吃了7只老鼠,每只老鼠吃了7穗大麦,每穗大麦种子可以长出7斗大麦,清算出房子、猫、老鼠、大麦和斗的总数。”

奇怪的是古代俄罗斯民间也流传着类似的算术题:

“路上走着七个老头,

每个老头拿着七根手杖,

每根手杖上有七个树权,

每个树权上挂着七个竹篮,

每个竹篮里有七个竹笼,

每个竹笼里有七个麻雀,

总共有多少麻雀?”

古俄罗斯的题目比较简单,老头数是7,手杖数是7×7=49,树权数是7×7×7=49×7=343,竹篮数是7×7×7×7=343×7=2401,竹笼数是7×7×7×7×7=2401×7=16807,麻雀数是7×7×7×7×7×7=16807×7=117649。总共有十一万七千六百四十九只麻雀。七个老头能提着十一万多只麻雀溜弯儿,可真不简单啊!若每只麻雀按20克算,这些麻雀有2吨多重。

《兰特纸草书》上在猫吃老鼠、老鼠吃大麦的问题后面有解答,说是用2801乘以7。

求房子、猫、老鼠、大麦和斗的总数,就是求和7+7×7+7×7×7+7×7×7×7+7×7×7×7×7=7+49+343+2401+16807=19607。这同上面2801×7=19607的答数一样,古代埃及人在四千多年前就掌握了这种特殊的求和方法。

类似的问题在一首古老的英国童谣中也出现过:

“我赴圣地爱弗西,

途遇妇子数有七,

一人七袋手中提,

一猫七子紧相依,

妇与布袋猫与子,

几何同时赴圣地?”

意大利数学家斐波那契在1202年出版的《算盘书》中也有类似问题:

“有7个老妇人在去罗马的路上,每个人有7匹骡子;每匹骡子驮7只口袋;每只口袋装7个大面包;每个面包带7把小刀;每把小刀有七层鞘,在去罗马的路上,妇人、骡子、面包、小刀和刀鞘,一共有多少?”

同一类问题,在不同的时代、不同的国家以不同的形式出现,但是,时间最早的还要数古埃及《兰特纸草书》。

遗嘱中的数学难题

在按遗嘱分配遗产的问题中,有许多有趣的数学题。

俄国著名数学家斯特兰诺留勃夫斯基曾提出到这样一道分配遗产问题:

“父亲在遗属里要求把遗产的1/3分给儿子,2/5分给女儿;剩余的钱中,2500卢布偿还债务,3000卢布留给母亲,遗产共有多少?子女各分多少?”

设总遗产为x卢布。

则有1/3x+2/5x+2500+3000=x,

解得:x=20625。

儿子分20625×1/3=6875(卢布),

女儿分20625×2/5=8250(卢布)。

结果是女儿得是最多,得8250卢布,儿子次之,得6875卢布,母亲分得最少,得3000卢布,看来父亲最喜爱自己的女儿。

下面的故事最初在阿拉伯民间流传,后来传到了世界各国,故事说:一位老人养了17只羊,老人去世后在遗嘱中要求将17只羊按比例分给三个儿子,大儿子分1/2,二儿子分1/3,三儿子分1/9,在分羊时不允许宰杀羊。

看完父亲的遗嘱,三儿子犯了愁,17是个质数,它既不能被2整除,也不能被3和9整除,又不许杀羊来分,这可怎么办?

聪明的邻居得到这个消息后,牵着一只羊跑来帮忙,邻居说:“我借给你们一只羊,这样18只羊就好分了。”

老大分 18×1/2=9(只),

老二分 18×1/3=(只),

老三分 18×1/9=2(只)。

合一起是9+6+2=17,正好这只羊,还剩下一只羊,邻居把它牵回去了。

羊被邻居分完了,再深入想一想这个问题,我们会发现遗嘱中不合理的地方,如果把老人留的羊作为整体1的话,由于1/2+1/3+1/9=17/18

同类推荐
  • 大学中庸(国学启蒙书系列)

    大学中庸(国学启蒙书系列)

    修身齐家治国平天下,应以德为本。博学之,审问之,慎思之,明辨之,笃行之。诚是实现中庸之道的关键。在本书中,编者韩震等人采用活泼插图的表现方式,编选相关的精彩故事,融知识性与趣味性于一体,让青少年在诵读中轻松快乐地亲近本书,更直观、真切地感受本书的魅力,在阅读中积淀文化底蕴,培养良好道德品质,从而受益一生。
  • 奇幻宇宙大探秘

    奇幻宇宙大探秘

    一本新潮、超炫、酷辣的探索书!一次炫丽夺目、时尚无敌的谜之旅!一堂奇妙鲜活、充满趣味的科学课!一份世界优秀科学家给孩子的最新报告!这里飞翔着让孩子耳目一新的奥秘、知识、惊奇和想象,以超级趣味的形式和无法抵挡的吸引力,瞬间点燃孩子内心好奇心的火山,让求知欲、创新力、探索力、思考力喷薄而出!本书是宇宙卷,讲述包括读者感兴趣的诸如星座、ufo、外星人等百科知识。
  • 美国大冒险(环游世界大探险)

    美国大冒险(环游世界大探险)

    这次神奇男孩莱恩和卡奇、米娜兄妹的冒险之旅发生在美国。他们结识美丽女孩露西却陷入了一场危险的纷争,自此他们就勇闯鬼屋救米娜、玩转好莱坞、身陷绑匪之手、向爱斯基摩人学习建造冰屋、雪山行中遭遇雪崩,在重重危险中见识了美国的种族歧视,经过一系列的冒险后,他们终于战胜了美国的黑手党……
  • 明鉴时事的故事

    明鉴时事的故事

    本套丛书图文并茂,格调高雅,具有很强的系统性、代表性、趣味性和可读性,是中小学生培养阅读与写作能力的配套系列读物,非常适合广大中小学生学习和收藏,也是各级图书馆收藏的最佳版本。
  • 民航天地(世界科技百科)

    民航天地(世界科技百科)

    本套青少年科普知识读物综合了中外最新科技的研究成果,具有很强的科学性、知识性、前沿性、可读性和系统性,是青少年了解科技、增长知识、开阔视野、提高素质、激发探索和启迪智慧的良好科谱读物,也是各级图书馆珍藏的最佳版本。
热门推荐
  • 挽云歌

    挽云歌

    云倦初,倦心,倦世,倦浮生;苏挽卿,挽情,挽爱,挽君魂。他只手改天换地,却难寻一安身之所;她一笑倾倒众生,偏难留他片刻温存。滴水之恩,让他愿为了烟火人间燃尽生命;情丝万缕,教她只为他一朵笑花挥洒青春。去留之间,江山易改,他终于恍悟:原来锦绣山河比不上她如花笑靥,千秋史册敌不过彼此缱绻情深!生死之际,他终为她选择了留下,斩断他一身的枷锁——难道他拼得起破碎的山河,却拼不起自己的今生?
  • 尸心不改

    尸心不改

    控尸门的欢乐二缺弟子江篱炼了一具美得人神共愤引得天雷阵阵的男尸,以为好日子开始了,结果没想到门派惨遭灭门。--情节虚构,请勿模仿
  • 高贵皇妃之休书

    高贵皇妃之休书

    “轩辕澈,纵使你有翻手为云、覆手为雨的本事,终有一日,我苏瑾会让你明白什么叫做痛不欲生,就算扭转乾坤,终不得所爱!”熊熊烈火中她重生,站在最高点,望着那冲天的黑烟,她葬身在那里,从今天开始再无苏瑾!山峰顶端,她持剑而舞,剑光四溢,只为一击,一击毙命!四海奔波,谁才是真正比肩而立,相守一生的男子?兔子在此声明,诚邀各位列座,兔子请客,凡是带着收藏、投票、留言入座的,兔子为各位特别奉上胡萝卜一根,美容养颜,耶!推荐兔子新文——风尘枭后强烈推荐好友文文,超好看的哦水云行—《我的王妃太有肉》鈅月—《狂妃食夫》梧桐小丫—《缠宠》兔子简介有待完善,大家多多提意见哦!
  • 气死夫君不偿命:冷宫皇后乐逍遥

    气死夫君不偿命:冷宫皇后乐逍遥

    想把她贬入冷宫就贬?想恢复她的皇后身份她就得感激涕零,乖乖跟他回去?否定否定还是否定。她的命运,才不要系在一个专制的男人身上。逃出宫去,天地之间,任我逍遥。妨碍她逃跑?别怪她气得他双脚跳。皇后要出墙,皇帝很后悔。后悔?晚了。
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 孙子兵法与战略管理

    孙子兵法与战略管理

    《孙子兵法》是一本具有商业价值的战略管理书,从商业竞争的角度对战略思想进行实践性解构。如何赢得竞争,是管理者每天要面对的重要问题,而解决这个问题的最好方法全在《孙子兵法》中。《孙子兵法》就是我们获得经济利益的方法库,其战略思想对现代商业竞争中的企业具有指导意义。
  • 商不厌诈

    商不厌诈

    本书是一部商战小说。本书以国内某日化公司现实场景和真实案例为蓝本,以作者亲身经历为基点,披露了日化行业的营销、策划、公关等内幕和生死博弈。
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 网球王子之羽落翼轻

    网球王子之羽落翼轻

    “浅翼!你给我回来!”歇斯底里的吼出心中想要说的话,“你的那个问题,现在我来回答你!只要你愿意你的折翼天使就由我来承载……”繁忙的机场,并没有因为这一句话而停下来,苍白的人儿露出了一个久违笑脸,想要张开嘴,犹豫之间又只能闭上,沙哑的声音艰难的吐出三个字,“我愿意……”
  • 东宫有本难念的经

    东宫有本难念的经

    宝庆十九年春,大佑国皇太子大婚,大将军之女入主东宫。一个不是淑女的将门千金遭遇一个不是文韬武略的中庸太子,到底是佳偶天成,还是冤家路窄?成婚一年不足,太子忽然休妻。迷影重重,生死茫茫,这样一来,还是不是大团圆结局?