登陆注册
2379700000005

第5章 数学之谜(5)

4.“韩信点兵”之谜

“韩信点兵”传说是我国汉朝名将韩信计算士兵数目的独特方法,先于外国约五百年。他不让士兵报数,也不是五个。十个地去数,而是让士兵列队行进,先是每排3人,然后每排5人,最后每排7人,只将所余的士兵数站着便知士兵的总数,写成题目就是:

“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问此物最小几何?”

答曰:“二十三。”

术曰:“三三数之剩二置一百四十,五五数之剩三置六十三,七七数之剩二置三十,并之得二百三十三,以二百十减之即得。”

分析:所求的数N应该是5和7的倍数,同时被3除后余2;是3和7的倍数,同时被5除后余3;是3和5的倍数,同时被7除后余2,同时满足上述三个条件的数中最小的数。

是5和7的倍数,同时被3除后余1的数是70。则余2的数就是70×2=140;是3和7的倍数,同时被5除余1的是21,则余3的数就是21×3=63;是3和5的倍数,同时被7除后余1的数是15,则余2的数就是15×2=30。

所以,N=70×2+21×3+15×2-105×2=233-310=23

5.古代升官试题

传说唐代尚书杨损,廉洁奉公,任人唯贤。有一次,要在两名小吏中提升一人,主管提升工作的官员感到很难决断,便请示杨损。杨损认为,作为一个官员,不仅要有高尚的品德,还要有一定的文化水平。于是,他说:“一个官员应具备的一大技能是速算。让我出题来考考他们,谁算得快就提升谁。”杨损出了一道题:

“有人在林中散步,无意中听到几个强盗在商讨如何分赃。他们说,如果每人分6匹布,则余5匹;每人分7匹布,则短少8匹。试问共有几个强盗几匹布?”两个小吏听过题目后,便用筹算解联立一次方程组。后来,先得出正确结果的小吏果真升了官,大家心服口服。

这个故事反映出我国古代人民对于解联立一次方程组的熟练程度。事实上,在2 000多年前的《九章算术》中已系统地叙述了联立一次方程组的解法,这是中国古代数学的杰出贡献之一。

《九章算术》是我国至今有传本的一部经典数学著作,内容极为丰富,它几乎集中了过去和当时的全部数学知识,将246个问题分为九章,所以叫做《九章算术》。

《九章算术》不是出自某一个人的手笔,不是一个时代的作品。它是经过历代名家的修订和增补,才逐渐成为定本的。它成书于何时目前学术界尚无统一结论,据推测起码在公元1世纪之前。《九章算术》对我国以及一些外国的数学发展有很大影响,直到16世纪我国的数学著作大都还是受它的体例的影响。

《九章算术》的第八章“方程”,给出了联立一次方程组的普遍解法,并且使用了负数,这在数学史上具有非常重要的意义。

我国古代是用算筹来运算的,未知数不用符号表示,只是将各个系数用算筹依次布列成方阵的形式。“程”是变量的总名,也有计量、考核、程式的意思。“方程”的名称,就来源于此。

《九章算术》第八章的第一题为:

“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?”

“禾”指黍米,一“秉”即一捆,“上禾三秉,中禾二秉,下禾一秉,实三十九斗”就是说:三捆上等黍米,两捆中等黍米,一捆下等黍米,一共可打出黍米谷39斗。第八章中还有四元及五元的方程组,也是用类似的方法来解的。

在国外,线性方程组的完整解法,直到17世纪末才由微积分的发明人莱布尼茨着手拟定。可见,从时间上来说,《九章算术》的解法实是在世界数学史上一大光辉成就,值得中国人自豪!

自从《九章算术》提出了多元一次联立方程后,多少世纪没有显著的进步。贾宪、秦九韶、李治等人曾研究过一元高次方程。元朝杰出数学家朱世杰集前人之大成。建立了四元高次方程组理论,并称为“四元术”。他用天元、地元、人元、物元表示四个未知数,相当于现在的x、y、z、u。朱世芝的《四元玉鉴》一书,举例说明了一元方程、二元方程、三元方程、四元方程的布列方法和解法。其中有的例题相当复杂,数字惊人的庞大,不但过去从未有过,就是今天也很少见。可见朱世杰已经非常熟练地掌握了多元高次方程组的解法。

在外国,多元方程组虽然也偶然在古代的民族中出现过,例如古巴比伦人借助数表处理过某种二元二次方程组,但较系统地研究却迟至16世纪,1559年法国人彪特才开始用不同的字母A,B,C……来表示不同的未知数。而过去不同未知数用同一符号来表示,以致含混不清。正式讨论多元高次方程组已到18世纪,由探究高次代数曲线的交点个数而引起。1764年法国人培祖提出用消去法的解法,这已在朱世杰之后四五百年了。

6.五家共井

我国最早提出不定方程问题,它由“五家共井”引起。古代,没有自来水,几家合用一水井是常见的事。《九章算术》一书第八章第十三题就是“五家共井”问题:

今有五家共井,甲二绠不足,如乙一绠;乙三绠不足,如丙一绠;丙四绠不足,如丁一绠;丁五绠不足,如戊一绠;戊六绠不足,如甲一绠。如各得所不足一绠,皆逮。问井深、绠长各几何?

用水桶到井中取水,当然少不了绳索,“绠”就是指“绳索”。原题的意思是:

五家共用一水井。井深比2条甲家绳长还多1条乙家绳长;比3条乙家绳长还多1条丙家绳长;比4条丙家绳长还多1条丁家绳长;比5条丁家绳长还多1条戊家绳长;比6条戊家绳长还多1条甲家绳长。如果各家都增加所差的另一条取水绳索,刚刚好取水。试问井深、取水绳长各多少?

我国古代数学家在《九章算术》的基础上对不定方程做出了辉煌的成绩。“五家共井”问题是后来百鸡术及大衍求一术的先声。

“五家共井”问题,曾引起世界上很多数学家的注视。在西方数学史书中,把最早研究不定方程的功绩归于希腊丢番都。其实,他在公元250年左右才研究这些问题,要比我国迟200多年。

公元6世纪上半期,张丘建在他的《张丘建算经》中有一道百鸡问题:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。凡百钱,买鸡百只。问鸡翁、母、雏各几何?

意思是,如果1只公鸡值5个钱;1只母鸡值3个钱;3只小鸡值1个钱。现用100个钱,买了100只鸡。问公鸡、母鸡、小鸡各多少?

数学史家评论说,一道应用题有多组答案,是数学史上从未见到过的,百鸡问题开了先例。《张丘建算经》中没有给出解法,只说:“术曰:鸡翁每增四,鸡母每减七,鸡雏每益三,即得。”意思是:如果少买7只母鸡,就可多买4只公鸡和3只小鸡。因为7只母鸡值钱21,4只公鸡值钱20,两者相差3只小鸡的价格。只要得出一组答案,就可推出其余两组。但这解法怎么来的?书中没有说明。因此,所谓“百鸡术”即百鸡问题的解法就引起人们的极大兴趣。

稍后,甄鸾在《数术记遗》一书中又提出了两个“百鸡问题”,题目意思与原百鸡问题相同,仅数字有所区别。到了宋代,著名数学家杨辉在他的《续古摘奇算法》一书中也引用了类似的问题:

“钱一百买温柑、绿桔、扁桔共一百枚。只云温柑一枚七文,绿桔一枚三文,扁桔三枚一文。问各买几何?”

到了明清时代,还有人提出了多于三元的“百鸡问题”。不过,各书均与《张丘建算经》一样,没有给出问题的一般解法。

7世纪时,宋代有人对百鸡问题提出另一种解法,但只是数字的凑合。到了清代焦循在他的《加减乘除释》一书中指出其错误。之后,不断有人提出新的解法,但都没有完全得到普遍解决此类题目的通用方法。例如丁取忠在他的《数学拾遗》中给出一个比较简易的解法:先设没有公鸡。用100个钱买母鸡和小鸡共100只,得母鸡25只、小鸡75只。现在少买7只母鸡,多买4只公鸡和3只小鸡,便得第一组答案。同理可推出其余两组。直到19世纪,人们才把这类问题同“大衍求一术”结合起来研究。

百鸡问题是一个历史名题,在世界上有很大影响。在国外数学书中常可看到类似的题目。

7.仙鹤图之谜

传说宝华寺曾藏有一幅鲜为人知的仙鹤图。这仙鹤图为数海法师所作,在他临终前秘传给他的一位弟子,并嘱咐他死后49天才能打开。数海法师圆寂后,这位弟子总想打开图看看,但又不愿违背师父遗嘱。过了42天,实在坚持不下去了,当天半夜,他打开图一看,原来是张仙鹤图。画面上有7棵松树,每棵松树上均有7只仙鹤,松树下面写了一个黑色的“七”字,但有一棵松树例外,这松树上一只仙鹤也没有,松树下面写了一个红色的“七”字。

红色的“七”字是什么意思呢?弟子们无法理解。不过,因为数海法师神通广犬,精通算术。人们相信,图中必有奥秘。后来,有了负数概念,有人猜测,红色的“七”字,表示负数(-7)。但是,松树上有(-7)只仙鹤,又是什么意思呢?始终是个谜。自从秦始皇焚书坑儒后,宝贵的仙鹤图失传,这事情几乎被人们遗忘了。但是,过了二千多年,人们又想想了仙鹤图,这与下面的椰子问题有关。

5个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。由于旅途劳累,大家顾不上椰子,很快就睡觉了。第一个水手醒来后,把椰子分成五堆,余一只给了猴子,自己藏了一堆又去睡觉了。第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只给猴子,私藏一堆,再去入睡。天亮以后,大家发现椰子已剩下不多了,各人心里有数,但谁也不说。为了公平,大家把余下的椰子又分成五堆,每人得一堆,这时,巧得很,又余下一只,再给猴子。试问原先共有几只椰子?

这是一道世界有名的趣味数学题。

设最初共有椰子x只,天亮后大家一起分配时每人分得y只。

世界著名物理学家李政道在访问中国科技大学时,曾在少年班提到这个题目,并介绍了怀德海的解法。

怀德海是英国数理逻辑专家,对于上述椰子问题,他给出了一个异乎寻常的解法。

首先,从方程(*)可看出,如果某数x1是方程的一个解,则x1+15625也是方程的解。这一点我们也可用下面的方法来考虑,由于原有的椰子曾被连续6次分成5堆,因此如果某数是该方程的一个解时,则把此数加上5(上标6)(5(上标6)=15625)后,仍旧是方程的解。通常人们解不定方程应用题,总是只注意它的正整数解,可是怀德海却与众不同,他的方法异乎寻常,他先借助负整数来帮忙,在找到一个负整数解之后,再过渡到正整数。就像在几何中引用辅助线、辅助角一样。

在方程(*)中,设y=-1,则可得:

1024x=-4096,∴ x=-4。

既然-4是这个不定方程的一个特解,则-4+15 625也是方程的解。可见,所求的椰子数应是:

-4+15625=15621(只)。

怀德海自己说,他是用下面的想法“领悟”出-4是不定方程的一个特解的:

假定当初有-4只椰子,则在其中硬拿出一只来给猴子后,根据正、负数减法,还剩下-4-1=-5(只),分成五堆,每堆便有-1只椰子。私自藏起一堆之后,还有四堆,每堆有-1只椰子,所以一共仍然是(-4)只椰子,这正好仍然回到没有分以前的情况。照这样分法,不仅5次、6次……可以一直分下去,都符合题目之要求。因此,在这个题目中,-4是一个神奇的数。

按照常理来说,每堆椰子数为“负数”是毫无意义的,但从纯数学的观点来看,却是能满足题中分配方法的,并且是能帮助解决问题的。它正像物理学中的“负质量”或“虚功”一样,在解决具体问题时是有用的。

怀德海的巧妙解法传到我国后,人们想起2000年前的仙鹤图。既然,一堆椰子的数目可以设想是负数,那么,一棵松树上的仙鹤的数目,也可设想为负数。可以推测,数海法师早就掌握了利用负数解决问题的高度技巧。

8.掉进漩涡里的数

三十多年前,日本数学家角谷静发现了一个奇怪的现象:一个自然数,如果它是偶数,那么用2除它;如果商是奇数,将它乘以3之后再加上1,这样反复运算,最终必然得1。

比如,取自然数N=6,按角谷静的作法有:6÷2=3,3×3+1=10,10÷2=5,5×3+1=16,16÷2=8,8÷2:4,4÷2=2,2÷2=1,从6开始经历了3→10→5→16→8→4→2→1,最后得1。

找个大数试试,取N=16384。

16384÷2=8192,8192÷2=4096,4096÷2=2048,2084÷2=1024,1024÷2=512,512÷2=256,256÷2=128,128÷2=64,64÷2=32,32÷2=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,这个数连续用2除了14次,最后还是得1。

这个有趣的现象引起了许多数学爱好者的兴趣,一位美国数学家说:“有一个时期,在美国的大学里,它几乎成了最热门的话题,数学系和计算机系的大学生,差不多人人都在研究它。”人们在大量演算中发现,算出来的数字忽大忽小,有的过程很长,比如27算到1要经过112步,有人把演算过程形容为云中的小水滴,在高空气流的作用下,忽高忽低,遇冷成冰,体积越来越大,最后变成冰雹落了下来,而演算的数字最后也像冰雹一样掉下来,变成了1!数学家把角谷静这一发现,称为“角谷猜想”或“冰雹猜想”。

把它叫猜想,是因为到目前为止,还没有人能证明出按角谷静的作法,最终必然得1。

这一串串数难道一点规律也没有吗?观察前面作过的两串数:

6→3→10→5→16→8→4→2→1;

16384→8192→4096→2048→1024→512→256→128→64→32→16→8→4→2→1。

最后的三个数都是4→2→1。

为了验证这个事实,从1开始算一下:

3×1+1=4,4÷2=2,2÷2=1。

结果是1→4→2→1,转了一个小循环又回到了1,这个事实具有普遍性,不论从什么样自然数开始,经过了漫长的历程,几十步,几百步,最终必然掉进4→2→1这个循环中去,日本东京大学的米田信夫对从1到10995亿1162万7776之间的所有自然数逐一做了检验,发现它们无一例外,最后都落入了4→2→1循环之中!

计算再多的数,也代替不了数学证明。“角谷猜想”目前仍是一个没有解决的悬案。

其实,能够产生这种循环的并不止“角谷猜想”,下面再介绍一个:

随便找一个四位数,将它的每一位数字都平方,然后相加得到一个答数;将答数的每一位数字再都平方,相加……一直这样算下去,就会产生循环现象,现在以1998为例:

1(上标2)+9(上标2)+9(上标2)+8(上标2)=1+81+81+64=227,

2(上标2)+2(上标2)+7(上标2)=4+4+49=57,

5(上标2)+7(上标2)=25+49=74,

7(上标2)+4(上标2)=49+16=65,

6(上标2)+5(上标2)=36+25=61,

6(上标2)+1(上标2)=36+1=37,

3(上标2)+7(上标2)=9+49=58,

5(上标2)+8(上标2)=25+64=89。

下面再经过八步,就又出现89,从而产生了循环。

回数猜想是数学“黑洞”吗?

同类推荐
  • 笠翁对韵(国学启蒙书系列)

    笠翁对韵(国学启蒙书系列)

    《笠翁对韵》,借助国学智慧,成就卓越人生! 千古名篇,美轮美奂;文学瑰宝,锦绣灿烂。无数伟人从这里放飞自己的理想,无数学人从这里开始知识的积淀,更有无数读者在这里陶冶情操,开启自己的智慧人生。
  • 一岁的小鹿

    一岁的小鹿

    《一岁的小鹿》如同大自然的一幅全景画:人类、动物、植物、风光。人类是大自然不可缺少的组成部分,他们与大自然和谐或不和谐地相处着,他们享受着自然的给予,也忍受着自然的磨难。
  • 谁让我心动(好看系列)

    谁让我心动(好看系列)

    叙事艺术的时尚化表达,是王钢作品最受儿童读者欢迎的一个重要的因素。王钢小说呈现了今天儿童生活的时尚性的一面,而且用很新鲜的、具有当下气息的语言准确地表现了校园生活和儿童内心。王钢的时尚化表达,是从两个方面进行的:一是用幽默的场景和夸张而富有情感冲击力的语言来展现形象的特征。二是小说里每一个小角色的性格和语言都是很独立性的,作家给每一个孩子都画下了一幅喜剧化的脸谱。值得注意的是,王钢意识到了儿童生活时尚化的一面,将这种时尚化加以艺术的呈现,给予审美的观照,赋予爱的色彩。
  • 丹麦童话20篇

    丹麦童话20篇

    相信这些童话,不仅能给孩子们带来一次跨越国界、跨越时空的阅读体验,还能让孩子们真实地感受真、善、美,勇敢地面对困难和挫折,积极地思考和解决问题,大胆地展开想象……总之,这些经典童话中的可贵品质,会使孩子们的人格变得更健全,内心变得更强大,心性变得更随和。
  • 打开孩子智慧门的108个好故事

    打开孩子智慧门的108个好故事

    这套书既包括中国古典文化的精髓,如唐诗、寓言等,又有小朋友喜欢听的智慧故事、童话故事和民间故事;既有英语、数学,又有安全常识等等,我们编写的目的就是要开拓小朋友的知识视野,促使他们全面提高文化科学素养,使小朋友在快乐的阅读中能增长知识…
热门推荐
  • 草包煞凤舞九天

    草包煞凤舞九天

    【完结,女强,爽文,一对一!】惊才艳绝的梵天萝穿越到八大豪门之首的梵家七小姐身上。没有修炼天赋就是草包废物!草包废物?瞎了你们的狗眼!睁大眼睛看清楚,天才算什么?遇上变态也得低头!这一世,草包势要成变态,九天之上,凤舞天下!
  • 好习惯:培养孩子学习好习惯88法

    好习惯:培养孩子学习好习惯88法

    习惯对于我们生活有着极大的影响,因为它是一贯的。在不知不觉中,经年累月地影响着我们的品德,暴露出我们的本性,左右着我们的成败。在现代社会中,要想使自己的孩子学习成绩优秀,成为一名成功人士,创造卓越的成就,就必须从培养良好的习惯人手。
  • 少年中国说(中小学生必读丛书)

    少年中国说(中小学生必读丛书)

    本书精选了梁启超先生在政论、文论、讲演和诗词等方面最具代表性的一些作品。可以说每篇文章都展现了梁启超先生独特而汪洋恣肆的文笔和激扬而与时俱进的思想,具有极高的知识性和可读性。
  • 楚汉传奇

    楚汉传奇

    热播大戏《楚汉传奇》同名小说!暴秦末年,秦失其鹿,群雄逐之,一时间机诡百出,兵戎遍布。沛县刘邦出自乡野,然知人、善用;枭雄项羽勇武盖世,然刚愎自用。巨鹿一站项羽少年得志,成为反秦盟主。不想,刘邦意外轻取光中,自此兄弟反目,鸿门宴前生死相搏。时势造英雄,是世事莫测,刘邦“明修栈道,暗度成仓”还定三秦,彭城大战,荥阳攻守、十面埋伏,最终项羽败亡,刘邦即皇帝位,是为汉高祖。全书以《史记》为纲,思想为经、艺术为纬,还原两千多年前那场最惊心动魄的生死较量,解读楚汉争霸玄机。
  • 卵巢健康书

    卵巢健康书

    卵巢是女人的根本!卵巢控制着女人的容颜、身材、气质、月经、怀孕、产后恢复、更年期,卵巢好,女人才好。养好卵巢,女人不老。研究证明,女性卵巢在30岁就开始慢慢衰老了。卵巢衰老的女人,脸色蜡黄,皱纹、色斑频生,身材臃肿,比同龄人显老10岁。月经不调、腰酸背痛、脾胃虚弱、失眠多梦、情绪糟糕等问题挥之不去。本书作者杨保军是北京天坛医院卵巢诊治专家,她通过多年临床案例故事,亲自传授饮食、瑜伽以及各种日常生活小妙方等卵巢保养方案,让女人达到美白、嫩肤、去痘、除皱、丰胸、增高等养颜效果,增加女人味,同时,赶走卵巢卵巢疾病,让女人月经调顺,怀孕容易,产后迅速恢复容颜身材,预防更年期提前,做一个快乐的俏女人。
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 天香引

    天香引

    温亚军,现为北京武警总部某文学杂志主编。著有长篇小说伪生活等六部,小说集硬雪、驮水的日子等七部。获第三届鲁迅文学奖,第十一届庄重文文学奖,《小说选刊》《中国作家》和《上海文学》等刊物奖,入选中国小说学会排行榜。中国作家协会会员。
  • 傻子王爷无情妃

    傻子王爷无情妃

    一只毒蝎子,彻底断送了她年轻的生命!别人只知道,那个软弱没主见的女人被迫嫁给一个痴傻呆闷的七皇子。殊不知,她早已不再是“她”!面对痴傻只会憨笑的美男,她气愤难填!你傻,本美女就医好你,谁知医好后,遭到嫌弃,却换来一纸休书,气愤之下,她恨不得与他同归于尽……
  • 北大清华最佳CEO讲座:最有价值的十堂管理课

    北大清华最佳CEO讲座:最有价值的十堂管理课

    公司中最强大的执行力是克服一切管理困难的利刃。——北京大学光华管理学院院长/厉以宁教授细节决定成败,执行就是一切,不注重小节,任何一家公司都不会取得最佳的管理效益
  • 催眠启示录(爱伦·坡中短篇小说选)

    催眠启示录(爱伦·坡中短篇小说选)

    爱伦.坡关于小说创作的著名理论是“效果论”,即力图在作品中先确立某种效果,具体的创作和思考要围绕这种预期的效果。 这个小说选本《催眠启示录(爱伦.坡中短篇小说选)》,既有侦探类,也有恐怖类、神奇类、心理类、象征类等,能够大致囊括他的总体风格。 《催眠启示录(爱伦.坡中短篇小说选)》收录了《威廉.维尔逊》、《被藏起来的心脏》等文章。