登陆注册
3252400000002

第2章 破解基因密码

今天,基因,可以说是人尽皆知的一个名词。无论是说到“生命的遗传”,还是谈起“生命的复制”,人们都会或模糊、或清晰地意识到:是基因在里面起着决定的作用,而近些年来,日益为舆论所关注的“基因工程”更是带给人类无限美好的憧憬。人们在兴奋之余,也常常会问,基因本质是什么?其中的奥秘又是怎样的呢?

1.什么是生命的基因

1899年,丹麦约翰逊首次提出用“基因”一词来代替德国生物学家孟德尔的遗传因子。他在1911年还指出,受精并不是遗传具体的性状,而是一种潜在的能力,他把这种叫做“基因型”。基因型可能在个体中表现出可见性状(表现型),也可能不表现。

约翰逊提出的基因一词一直沿用下来。以后在经典遗传学中,基因作为存在于细胞里有自我繁殖能力的遗传单位,它的含义包括三个内容:第一,在控制遗传性状发育上是功能单位,故又称顺反子;第二,在产生变异上是突变单位,故又称突变子;第三,在杂交遗传上是重组或者交换单位,故又称重组子。把基因分成顺反子、突变子、重组子,证明基因是可分的,打破了传统的“三位一体”的说法。这一点现在已经为现代遗传学所证实。

生物学家缪勒认为,应该摆脱基因概念创始人的束缚,力图将基因物质化与粒子化。他提出,如果基因是物质的,人们就可以用自由电子之类打中它,并得到对它大小的估计。缪勒就是在这种思想指导下,首次以X射线造成人工突变来研究基因的行为。1921年,缪勒明确提出:基因在染色体上有确定的位置,它本身是一种微小的粒子;它最明显的特征,是“自我繁殖的本性”;新繁殖基因经过一代以上,可以“变成遗传的”;基因类似病毒。今天我们知道,任何最简单的病毒也不只一个基因,况且病毒外面还有蛋白质外壳。但他提出基因类似病毒,足以反映缪勒力图将其因结构具体化、物质化的心情。正因为如此,他深信“我们终归可以在研钵中研磨基因,在烧杯中烧灼基因”。

在人们承认基因是遗传的基本单位之前,生物化学家曾经将酶作为遗传的基本物质,并提出“酶制造酶”的错误理论。

20世纪30~40年代,当遗传学家为基因的作用而感到困惑不解时,生物化学家正在兴致勃勃地研究酶。酶是一种特殊的蛋白质,酶具有催化和控制化学反应的特殊才能。而且这时的生物化学家还已经知道,蛋白质是由许多氨基酸聚合而成的多肽链,多肽链本身就可以折叠成复杂的蛋白质的立体结构。可是生物化学和遗传学在这个时期却并没有什么配合,大家各搞各的。现在遗传学家向生物化学家提出了一个问题:细胞中的蛋白质或酶是从哪里来的?

于是一些生物化学家就提出这么一种见解:蛋白质的生成只要用一个又一个的具有特殊功能的酶把氨基酸的顺序决定下来就行了。因此,制造每一种蛋白质一定会有与它的氨基酸数目相等的酶存在。这就是“酶制造酶”的理论。这其中有一个历史原因,当时蛋白质化学发展较快,核酸的生化分析则发展较慢。

但这个理论是错误的,虽然这个假说看起来好像很有道理,但是人们只要仔细一想,它实在是太荒谬可笑了。试想一个蛋白质的形成需要许多决定氨基酸顺序的酶,那么这种决定氨基酸顺序的酶是什么呢?它又是谁制造出来的呢?那只有再假设存在一系列的决定氨基酸顺序的酶的酶,这样下去就没完没了,氨基酸的顺序问题永远也得不到解决。

还有一种见解,认为细胞中存在着一种神奇的蛋白质模板,可以不断地变化形状,20种氨基酸就在模板上表成不同的顺序。可是人们一直不能找到这种模板,相反却发现所有的酶似乎只有一种功能,专一性非常强,那种多功能的模板根本不存在。

后来人们逐渐知道,如果蛋白质能够制造蛋白质,那么反应的精确性必须非常高。每合成108个氨基酸不能产生一个错误,这样才能保证遗传信息的稳定性。但是,在酶生酶反应的精确度只能达到10——6;显然,酶有天大的本事也不能担负起遗传物质的作用。

1951年,美国生物学家摩尔根等人发表了《孟德尔遗传的机制》一书。这本书总结了他们主要的遗传学观点。在这本书里,摩尔根全面提出了基因论。

(1)基因位于染色体上;(2)由于生物所具有的基因数目大大超过了染色体的数目,一个染色体通常含有许多基因;

(3)基因在染色体上有一定的位置和一定的顺序,并呈直线排列;

(4)基因之间并不是永远连结在一起,在减数分裂过程中,它们与同源染色体上的等位基因之间常常发生有秩序的交换;

(5)基因在染色体上组成连锁群,位于不同连锁群的基因在形成配子时按照孟德尔第一遗传规律和孟德尔第二遗传规律进行分离和自由组合,位于同一连锁群的基因在形成配子时按照摩尔根第三遗传规律进行连锁和交换。基因对于遗传学家来说,如同原子和电子对于化学家和物理学家来说一样重要。对于这一点摩尔根有一句很深刻的名言,说来是很有气魄的:“像化学家和物理学家假设看不见的原子和电子一样,遗传学家也假设了看不见的要素——基因。三者主要的共同点,在于化学家、物理学家和遗传学家都根据数据得出各人的结论”。

迄今为止,从最高等的哺乳动物到最低等的细菌和病毒,基因在染色体上的原理都是适用的,因此基因论科学地反映了生物界的遗传规律。不过基因论也有局限性,当时谁也不知道基因是什么样的物质;至于这样的遗传粒子究竟有什么功能,它是如何发挥功能的等等一系列的问题,基因论并没有涉及到。

最终解决基因概念的问题是分子遗传学的出现。要解决基因到底是什么的问题,分子遗传学就需要回答:如果DNA是遗传物质,那么它何以具有稳定的结构?是什么力(弱力还是强力)把它们结合在一起?它的结构中糖、磷酸与碱基处在什么样的关系中?如何产生它的副本?又如何携带遗传信息?

在实验基础上,沃森和克里克经过艰苦的探索和分析,终于在1953年揭示了DNA的结构。DNA双螺旋结构的提出,标志着遗传密码和遗传物质的调节控制机制的认识,生物学家认识到DNA结构上贮存着遗传信息。这些特定的信息规定某种蛋白质的合成,苷酸序列与氨基酸序列之间存在着特定的关系。从而人们终于达到了共识:DNA是遗传物质,基因是苷酸上的一定碱基序列。

这个认识是否正确呢?人工合成的第一个基因——酵母丙氨酸转移DNA基因证明了这一点。近年来,人们用遗传工程的方法,已经成功地把某些生物遗传质的一部分基因提取出来,组合到另一个不具有该基因的生物的遗传物质上,并使新引入的遗传物质在新的个体中表达出自己的功能。

现代生物学证明,基因是遗传信息的载体,是DNA(去氧核糖核酸)或是某些病毒中的RNA(核糖核酸)分子的很小很小的区段。一个DNA分子可以包含成百、上千、上万个基因,每个基因又包含若干遗传信息。已知的遗传信息都是三联体密码的形式。

2.撩起核酸的面纱

当我们对什么是基因有所了解后,再来看一看与其密切相连的核酸。

核酸是遗传信息的载体。为了认识这点,人们花费了近一个世纪的时间。

核酸的发现是一个偶然事件。1869,瑞士有位年轻人叫米歇尔(1844—1895)正在做博士论文。他要测定淋巴细胞蛋白质的组成(当时蛋白质的发现才30年的历史,并被认为是细胞中最重要的物质)。米歇尔为了获得更多的实验材料,便到附近的诊所去搜集伤员们的绷带,想从脓液里得到淋巴细胞。米歇尔研究的目的是要分析这些细胞质里的蛋白质组成,因此他用各种不同浓度的盐溶来处理细胞,希望能使细胞膜破裂而细胞核仍然保持完整。当他用弱碱溶液破碎细胞时,突然发现一种奇怪的沉淀产生了,这种沉淀物各方面的特性都与蛋白质不同,它既不溶解于水、醋酸,也不溶解于稀盐酸和食盐溶液。米歇尔意识到这一定是一种未知的物质,当他用不同浓度的盐溶液破碎细胞时好比是用不同孔径的筛子在搜寻这种物质,一旦盐浓度适当,该物质就被筛选沉淀出来了。那么这种物质是在细胞质里还是在细胞核里呢?为了搞清这个问题,他用弱碱溶液单独处理纯化的细胞核,并在显微镜下检查处理过程,终于证实这种物质存在于细胞核里。

米歇尔忘我地工作,1869年从春天到秋天,他用上述方法在酵母、动物和肾脏和精巢以及有核(如鹅)的血红细胞中都分离到这种未知物质。这些研究结果使他相信这种物质在所有生物体的细胞核里都存在,于是他把它定名为“核质”。

说来也巧,当米歇尔把这一重大发现向他的老师霍普·塞勒报告时,霍普·塞勒同时也收到了另一个学生的报告,发现了另一种未知物质——卵磷脂。这两种未知物质都含有较多的磷元素,这样霍普·塞勒不得不谨慎地决定重复他们的实验,因此,直到1971年才发表这两位学生的文章。又过了若干年,霍普·塞勒的另一个学生科塞尔(1853年—1927年)经过10多年的研究搞清了酵母、小牛胸腺等细胞的核质是由四种核苷酸组成,其碱基酸组成分别为腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧呤(T)和胞嘧啶(G)。而核酸组成成分中的另一个碱基尿嘧啶(U)的发现和鉴定则是20世纪初的事了。因为这类物质都是从细胞核中提取出来的,而且又都表现酸性,故改称为“核酸”(nucleic acid)。然而,实际上一直到了多年以后才有人从动物组织和酵母细胞分离出不含蛋白质真正核酸。

早期实验证明,核酸是由嘌呤碱(或嘧啶喊)、戊糖和磷酸组成的高分子物质。同时还发现,胸腺及许多其他动物组织细胞的核酸中所含的戊糖都是D-脱氧核糖,故称这类核酸为“脱氧核糖核酸”(DNA);而酵母及多种植物细胞核酸中所含的戊糖是D-核糖,故称这类核酸为“核糖核酸”(RNA)。这些发现显然是核酸化学上的重要成果,但也带来了一些错觉以致长期使人们误认为DNA只存在于动物组织,RNA只存在于植物组织;而且两者都只集中存在于细胞核。直至20世纪40年代初期,由于生物化学新技术的不断出现和应用。这些错误观点才逐渐被纠正。

另一方面,自核酸被发现以来相当长的时期内,有关它的生物学功能几乎毫无所知。直到1944年才有人发现,若将从S型肺炎链球菌(外面有一层多糖类荚膜)中提出的DNA与R型肺炎链球菌(外面没有荚膜)一起温育,则可使R型菌转化成S型菌,而且还能传代,这表示肺炎链球菌的DNA与其转化和遗传有关。1952年有人进一步发现,若以35S(进入蛋白质)和32P(进入DNA)标记的噬菌体中,只含32P而不含35S,这表示噬菌体的增殖和传代直接决定于DNA,而不决定于蛋白质。这一事实进一步证明了DNA就是遗传的物质基础。差不多与此同时,还有人观察到凡是分化旺盛或生长迅速的组织(如胚胎组织等),其蛋白质的合CD很活跃,同时RNA的含量也特别丰富,这暗示了RNA与蛋白质的生物合成之间存在着密切关系。

1953年华生和克里克提出的DNA双螺旋结构模型学说是人们对生物遗传特性的研究和核酸研究的共同结果。近百年遗传学研究所积累的有关遗传信息生物学属性知识,X线衍射技术对DNA结晶研究获得的一些原子结构的最新参数以及核酸化学研究获得的关于DNA化学组成(尤其是四种碱基比例关系)及结构单元的知识提供了DNA双旋结构模型的理论依据,这也是近百年来核酸研究划时代的结果。关于DNA,我们将在后面予以译述。

3.“信使”——MRNA

DNA的复制解决了遗传物质的连续性和遗传信息的“保真”性,那么,作为遗传物质的DNA又是怎样控制蛋白质的合成从而控制表现出来的外部性状呢?最简单的想法可许是假定DNA本身能把核苷酸序列所携带的遗传信息直接翻译为一定氨基酸序列的蛋白质。但这种想法显然不符合实际,因为所有真核生物的DNA几乎全部集中在细胞核中,而蛋白质的合成是在细胞质中进行的,这是由核膜所隔开而造成的“时空”差别,因而,必然有一种物质能把DNA中蕴藏的遗传信息带到合成蛋白质的场所。

1955年,布拉切特(Brachet)用洋葱根尖和变形虫进行实验,发现如加入RNA酶,分解掉细胞内的RNA,蛋白质的合成就停止;如果再加入从酵母中提取出来的RNA,则会又重新合成一定数量的蛋白质。这表明蛋白质的合成与RNA直接相关。同年,戈尔茨坦(Golstein)和普劳特(Plaut)等用放射性同位素标记变形虫细胞核内的RNA,然后把标记的RNA从细胞核相继进入细胞质。因此,把DNA的遗传信息由细胞核带到细胞质中控制蛋白质合成的特质很可能就是核糖核酸链RNA。

1955年,利特菲尔德(Litlefield)对小鼠饲喂用14C(一种放射性同位素)标记的亮氨酸。不久将小鼠杀死,取出肝细胞并分离其组成成分。发现大部分14C标记的亮氨酸已掺入蛋白质,并且与核糖体有联系。为此,他首先提出了核糖体是合成蛋白质的场所。根据这个发现,人们很容易这样设想:既然DNA在核内,核糖体RNA只存在于细胞质内,那么核糖体RNA(rRNA)本身作为核糖体的组成成分是否可能载有基因上的遗传信息呢?但仔细研究起来就可以否认这一想法。因为任何一个多核苷酸链,如果以DNA为模板而形成,它们必定具有反映DNA模板的碱基组成,而rRNA的碱基组成与DNA的碱基组成很不同。同时,细胞中酶的合成可以很迅速地切断和再继续,因此,用以指导蛋白质装配的模板应当“寿命”较短而且是不稳定的。但rRNA却至少能持续三代,寿命可称得上不短了。所以,从许多方面证明装配蛋白质的模板不可能是核糖体RNA(rRNA)。

看来,肯定是RNA参与了蛋白质的合成,既然不可能是以rRNA为模板,那么是什么充当了从DNA到蛋白质间的“信使”呢?

1948年曾有报道称:当噬菌体感染了细菌后产生一种十分不稳定的RNA,它们大多数都是与核糖体这种细胞器连接在一起的。这个报道引起了布伦纳(S·Brnner)、雅各布(P·A·Jacob)和梅塞尔森等人的注意。他们用放射性同位素13C、15N标记噬菌体感染细菌前的蛋白质,用32P标记感染后形成的RNA,证明了噬菌体感染后确实形成一种新的RNA,后者通常与核糖体结合。同时,他们还证明了这种RNA起着噬菌体DNA信使的作用,由它来命令细菌的核糖体为噬菌体制造外壳蛋白。所以可以作出以下结论:噬菌体的DNA是通过向核糖体“派驻”信使RNA米指导蛋白质合成的。于是,他们于1961年宣布发现了一种新的RNA形式,即充当信使的RNA-—mRNA英文全称为“messangerRNA”。

mRNA这个信使是从何而来的呢?它是以DNA为模板,在RNA聚合酶的作用下,遵循碱基互补配对原则即G/G、A/U的规则,从51侧向31侧合成的一条多聚核糖苷酸链。这个过程称为“转录”。显然,经过转录,DNA模板上的信息就被“转录”到mRNA上。mRNA的合成在细胞核中进行,然后它就通过核膜游动到细胞质内,指导蛋白质合成。历史上,证明转录现象的实验很多,其中两个最著名的当数RNA的酶促合成实验和DNA-RNA杂交实验。

1961年,韦斯(P·A·Weiss)和赫维赤(Hurwitz)发现了一个能在DNA模板上合成RNA的酶,称之为依赖于DNA的RNA聚合酶,简称RNA聚合酶。几乎所有的细胞中都有这种酶。它的许多特征和DNA聚合酶相似,要求高能化合物即四种三磷酸核糖核苷酸(ATP、UTP、GTP和CTP)提供能量,少量的DNA为模板,再加进去四种脱氧核苷酸,结果便能合成一条互补于DNA一条链的RNA分子。而且RNA的碱基比除了以尿嘧啶U代表了DNA模板中的胸腺嘧啶T外,总是与双链DNA模板中的碱基比例相同。当使用DNA的其中一条单链为模板转录时,产物RNA的碱基比则和单链DNA互补。通过这种RNA的酶促合成实验证明,RNA的合成是以DNA为模板,根据碱基互补配对原则进行转录而来。

DNA按照碱基互补配对原则转录出RNA的另一个令人信服的证据来自DNA-RNA杂交实验。我们知道,DNA的两条链是靠互补碱基之间的氢键结合在一起的。如果把DNA缓慢加热至100℃,碱基之间的氢键会发生断裂而使两条链分开,这叫做变性或熔解。如果把它们再缓慢冷却,两条分开的互补链就会由于氢键的连接而重新结合成双链形式,这叫做退火或复性。在转录过程中,RNA是按碱基互补的原则,以DNA链混合在一起,就不仅会发生DNA两条链间的退火,还会发生DNA的一条链跟RNA和RNA杂交试验是检查DNA和RNA之间对应关系的一种直观有效的方法。1961年,霍尔(Hall)和斯皮格尔曼利用这一技术证实了DNA的转录现象。

无论哪种RNA都是以DNA为模板通过转录得来的。不仅仅是作为信使的mRNA,还包括组成核糖体的rRNA和tRNA。

4.运输工具——TRNA

当mRNA的神秘面纱被揭开后,科学家面临的另外一个问题就是mRNA如何翻译成蛋白质。在mRNA以DNA为模板合成时,由于碱基互补配对原则使得编码于碱基序列中的遗传信息得以保持在mRNA中。然而,mRNA上的那些碱基排列顺序又是如何与氨基酸之间对应起来的呢?为此,克里克于1958年曾提出过著名的“连接物假说”。指出核酸中的碱基顺序同蛋白质氨基酸顺序之间存在一种作为中介物的连接物分子。也就是说这种物质即能识别特定的mRNA核苷酸序列,又能识别氨基酸,充当蛋白质的翻译工具。打个比方,这种中介物就像会见外宾时的翻译,必须识别两种不同的语言,一种是核酸世界的语言,另一种则是蛋白质世界的语言。克里克还对这种翻译者做了以下预测:(1)它是一种分子转换器,使核酸的碱基排列信息转换成蛋白质中氨基酸的排列信息;

(2)这种转换器很可能是核酸;

(3)它不论以何种方式进入蛋白质翻译系统,都必须与模板形成氢键,有碱基配对的关系;

(4)有20种分子转换器,每种氨基酸“配备”一个;

(5)每种转换器必定有一个特定的酶,使自己与氨基酸相连结。以后的研究完全证实了克里克的预见。这种分子转换器就是转运RNA(tRNA)。以后人们又测出tRNA的分子量很小,只有80多个核苷酸,占细菌总RNA含量的15%。再后来人们就发现tRNA具有转运氨基酸的功能,而且对自己所携带的氨基酸有要求,并不是谁都拉。于是在很短的时间内便迅速地把所有特异地转运20种氨基酸的绝大部分tRNA都找到了。而且发现tRNA争着运载它。

1965年美国学者霍利(R·W·Holley)经过7年的研究终于第一次测定了一个tRNA分子——酵母丙氨酸tRNA的结构,搞清楚了它的77个核苷酸的排列顺序。经过这个tRNA分子内部的碱基互补分析,设想它活像一片三叶草的叶子。近年来对其立体结构的计算表明它又呈“L”形。与当时建立的遗传密码——决定氨基酸的三联体碱基组成相比,霍利发现tRNA与mRNA的连接是通过“三叶草”顶端的三个碱基称为“反密码子”。

原来是tRNA运载着氨基酸,并特异地意识到mRNA的遗传信息,肩负起了基因和蛋白质之间翻译的责任。

同类推荐
  • 必懂的军事知识

    必懂的军事知识

    军事是一个国家和民族强大和稳定的象征,在国家生活中具有举足轻重的作用。国家兴亡,匹夫有责,全面而系统地掌握军事知识,是我们每一个人光荣的责任和义务,也是我们进行国防教育的主要内容。
  • 物理常识速读(速读直通车)

    物理常识速读(速读直通车)

    物理学从词义上看感觉高深莫测,是个很难理解的东西,但它确是与我们的生活息息相关,联系最紧密的学科!同样是声音,为什么有的愉悦心情,但有的却让人心里烦闷?为什么早晨温度低,中午温度高?爆米花“膨胀”的原因是什么?下过大雪后为什么太寂静?这种在日常生活中的无所不在、无处不见的疑问,我们一起来探索其中的奥秘!
  • 生活新探

    生活新探

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,社会的进步、科技的发展、人们生活水平的不断提高,为我们青少年的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,传播科学精神,提高青少年的科学素质,是我们全社会的重要课题。
  • 海洋馆漫游:海洋生物天地

    海洋馆漫游:海洋生物天地

    放眼全球,世界上最发达的国家都是海洋大国,经济最活跃的地区都在沿海地区。在当今国际社会,开发海洋、拓展生存和发展空间,已成为世界沿海各国的发展方向和潮流。海洋是一个富饶而未充分开发的自然资源宝库。海洋自然资源包括海域(海洋空间)资源、海洋生物资源、海洋能源、海洋矿产资源、海洋旅游资源、海水资源等。这一切都等待着我们去发现、去开采。青少年认真学习海洋知识,不仅能为未来开发海洋及早储备知识,还能海洋研究事业做出应有的贡献。
  • 描绘人体地图

    描绘人体地图

    从清晨听到第一声问候,到夜晚渐人香甜的梦境;从一个新生命降临人世,到体内最后一个细胞走向死亡,我们的身体犹如一座神秘莫测的迷宫,在每一个岔路口和转弯处都隐藏着生命的符号和健康的密码。《探索世界:描绘人体地图(彩图版)》将帮助你绘制一张详尽的地图,带领你走近我们熟悉又陌生的身体,了解我们自己。
热门推荐
  • 哪个夫君是我的

    哪个夫君是我的

    她有绝世容貌倾国倾城,他有爱美之心人之常情,从此后,她便夜夜侍君寝。进入皇宫她别有目的,品性却懵懂善良率直坦诚,却无法抑制自己的心,爱上了拥有佳丽三千的他。发现心中那份爱,傻傻的向他表白,换来的却是他的不屑和深深的伤害。他只要她乖乖的做一个侍寝的女人。她懂了,明白了,他是尊贵的皇帝,不谈情只谈天下,只宠女人,却不爱女人。心破了,碎了!———————————————————————————————他一向温柔的手,此刻却紧紧的掐着她的细颈,残酷而无情的道:“朕想得到的,别人休想得到,朕得不到的朕就亲手毁了她!”她泛白着脸,呼吸困难,一字一句的道:“那你就毁了我吧!”她以为自己终于找到传说中的爱情,却不料一切都是虚幻。他以为自己终于找到了倾心相爱的女人,谁知道一切都是谎言和欺骗。他为了自己身为皇帝的尊严,为了那颗高傲的心,伤害她,报复她对他的欺骗。而她,用冷漠和无声,默默的反击着他带给她的痛和伤害!原来幸福和爱情也可以是假的!———————————————————————————冷千夜——宇日王朝的皇帝,面如冠玉,眸如漆星,冷然中带着阴郁,神态中带着一些慵懒,可是那波澜不兴的眼神用总是会让人不寒而栗,性子里却隐藏冷酷无情的一面。冷邵阳——宇日王朝的王爷,刚毅中带着几分不羁,性格桀骜不驯,对女人一向淡然的他,却独独的钟情与她。独孤月——身份神秘的他,潇洒不羁,快意恩仇,无牵无挂,在遇到了她以后心莫名的被紧紧的揪住。……男主根据剧情随时添加,一对一结局!————————————————————推荐狸的完结文:《暴虐将军妻》《霸道王爷温柔爱》《恶男的美女保镖》——————————————————————————————推荐好友文文:《一夜恩宠》淡漠的紫色《情惑妖郎》懒离婚<敢不爱我,整死你!>旱莲草+++++++++++++++++++++++++++++++++++++++++会员晓晴所做视频地址:?pstyle=1喜欢文的读者亲,请点击【推荐投票】【放入书架】【留言】支持狸,谢谢!
  • 诚信(青少年成长智慧丛书)

    诚信(青少年成长智慧丛书)

    一本好书。就像一粒饱含智慧的种子。在孩子的心中播下这粒种子,让它生根发芽,伴随孩子一起快乐地成长。此刻,您手中的《青少年成长智慧丛书:诚信》正是这样一粒种子,还等什么?快快将它播撒在孩子的心里吧!
  • 寂静欢喜,不来不去

    寂静欢喜,不来不去

    【风尚阁】告诉你,阅读是一件美丽的事情:http://m.pgsk.com/fengshang【公告】本书已经完稿,所以大家可以放心的跳坑,后面也许会有小虐,但是结局一定温暖,里面也有很多美好温暖的小细节的,希望大家会喜欢,会陪着云初她们一路成长下去。也希望大家多多留言◇◇◇——————————————————————————————————◇◇◇【文艺版文案】沈云初一直觉得自己不过是一个平凡普通的女生那年的蓝白色格子衬衫,嘴角清浅的酒窝,还有少年清澈的眸子都是云初记忆里,无法遗忘的海一直到后来的遇见,慢慢深爱,最后离开那天,云初淋了雨,所有的爱情被湮灭在其中可是云初最终还是相信爱的,她那么热烈的期盼爱情,导致那些撕心裂肺,都变的虚无了起来这个世界上,没有什么会比爱情和梦想,更能让人成长云初掉过很多眼泪,终有一天安然微笑,身边的那个少年,也长成了沉稳的不浮躁的样子所有的秘密交织在一起,那些谎言,也不过以爱之名,也许笨拙,但是却是最真的真心最后不管世界怎么变,伤害怎么勇猛,他们都还有彼此,相拥而爱【装X版文案】当‘善良’温柔的现任男友PK多情花心的前任男友沈云初觉得,这个世界上,其实没有谁比谁更加的极品可是当现任男友的前任女友勾搭上前任男友的现任女友的时候云初知道,这真的不是什么天雷狗血的言情偶像剧而是她更为撒泼狗血的人生最后的最后,一切的一切都化为朵朵的浮云,飘在她悲摧的人生上空最后唯有,寂静欢喜,不来不去◇◇◇——————————————————————————————————◇◇◇【沈云初】如果你们都不爱我,那我一定会好好的爱自己【宋希年】云初,你永远不知道,我曾经多么用力的爱过你,即使现在,依然无法说不爱,这便是我的宿命【周青木】云初,对不起,终究是我对你不起!◇◇◇——————————————————————————————————◇◇◇【推荐时间】《岁月长,不见忘川》【古风】http://m.pgsk.com/a/296304/《日安,摩纳哥海岸》【轻松向暗恋成真】http://m.pgsk.com/a/313390/《全世界借我一秒遗忘你》【已完结】http://m.pgsk.com/a/252968/
  • 明治天皇:孝明帝驾崩卷(下册)

    明治天皇:孝明帝驾崩卷(下册)

    《明治天皇》再现了日本从幕末走向明治维新的历史变革,以优美的文笔,宏大的场景,详细描绘了日本近代决定国运的倒幕运动的整个过程。本书塑造了一个个鲜活的日本近代史人物形象,以及他们的坚定信念,对“安政大狱”、“樱田门之变”等重大历史事件的描述详实生动,是一部了解近代日本不可多得的佳作。
  • 异海2

    异海2

    20世纪80年代,一个立下战功的军人吴××接到国家指派的神秘任务:化名曹沧,参与一个中美合作的物理实验。这个实验的目的是尝试进入另外一个空间——异海。随着中美联合实验在诡秘异海的展开,一系列离奇惊险的状况不断发生,苏联也派遣了核潜艇尾随中美联合科考队进入了异海。三个国家的科考人员,面对诡异的异海,不得不选择合作,却又各怀心事,暗中谋取自己国家的最大利益。当这些科考人员渐渐产生友谊,准备共同完成实验的时候,他们发现,异海已经有人先行一步。更多神秘事件的谜团慢慢浮出水面:末日黎明计划、罗布泊实验、彭加木失踪事件、大西洲和平行世界异海的关系、人类的真正“祖先”……
  • 飞往天堂里的千纸鹤

    飞往天堂里的千纸鹤

    女人伤心、流泪,但就是不回去,就是不回去。脾气是倔强了点,但是他没来接,自己回去多丢脸啊。快过年了,女人的母亲说,嫁出去的女儿不能在娘家过除夕的,要不你就回去,要不你就离婚,还能怎么样?
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 东宫有本难念的经

    东宫有本难念的经

    宝庆十九年春,大佑国皇太子大婚,大将军之女入主东宫。一个不是淑女的将门千金遭遇一个不是文韬武略的中庸太子,到底是佳偶天成,还是冤家路窄?成婚一年不足,太子忽然休妻。迷影重重,生死茫茫,这样一来,还是不是大团圆结局?
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~&quot;我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 明治天皇:孝明帝驾崩卷(下册)

    明治天皇:孝明帝驾崩卷(下册)

    《明治天皇》再现了日本从幕末走向明治维新的历史变革,以优美的文笔,宏大的场景,详细描绘了日本近代决定国运的倒幕运动的整个过程。本书塑造了一个个鲜活的日本近代史人物形象,以及他们的坚定信念,对“安政大狱”、“樱田门之变”等重大历史事件的描述详实生动,是一部了解近代日本不可多得的佳作。