登陆注册
3237200000009

第9章

那么,其它怎样的凸多边形才能覆盖平面呢?1918年,法兰克福大学一位研究生卡尔·莱因哈特曾研究过这个问题。后来发表了论文,确定五种可以拼成平面的凸多边形。例如,他提出如果五边形ABCDE的各边分别为a、b、c、d、e,且c、e两边所对的角C、E满足C+E=180°,又a=C,那么这个五边形就能覆盖平面。

1975年,美国人马丁·加德纳在《科学美国人》这本杂志上开辟了关于镶嵌图案的数学游戏专栏,许多数学家和业余数学爱好者都参加了讨论。其中有一位名叫玛乔里·赖斯的家庭妇女是最热情的参予者之一。

赖斯是五个孩子的妈妈,1939年中学毕业前只学过一点简单的数学,没有受过正规的数学专业教育。她除了研究正多边形的拼镶问题以外,还研究了一般五边形。她独立地发现了一种五边形,并且向加德纳报告了这一发现:“我认为两条边长为黄金分割的一种封闭五边形可以构成令人满意的布局。”加德纳充分肯定了赖斯的研究成果,并把她介绍给一位对数学与艺术的和谐具有职业兴趣的数学家多里斯·沙特斯奈德。在沙特斯奈德的鼓励下,赖斯又发现了解决拼镶问题的另外几种五边形,而使这样的五边形达到13种。

赖斯的家务很忙,但这没有影响她研究的热情。她对人说:“在繁忙的圣诞节,家务占踞了我大量的时间,但只要一有空,我便去研究拼镶问题。没人时,我就在厨房灶台上画起图案来。一有人来,我就急忙地把图案盖上。因为我不愿意让别人知道我在研究什么。”

找零钱

一家手杖店来了一个顾客,买了30元一根的手杖。他拿出一张50元的票子,要求找钱。

店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头。

顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的。店主不得已向邻居赔偿了50元。随后出门去追那个顾客,并把他抓住说:“你这个骗子,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失。”

这个顾客却说:“一根手杖的费用就是邻居给你换零钱时你留下的30元,因此我只拿了你70元。”

请你计算一下,手杖店真正的损失是多少?这里要补充一下,手杖的成本是20元。如果这个顾客行骗成功,那么共骗得了多少钱?

唐僧取经

一天,唐僧想考考三个徒弟的数学水平,于是他把徒弟们叫到面前,说:“徒儿们,现在我在地上写3个数,你们谁能准确读出来,我就把真经传给他。”

唐僧首先写出:23456。猪八戒迫不及待地说:“这个读二三四五六!”唐僧摇了摇头,说:“八戒,多位数的读法是有规律的。每个数字从右到左依次为个位、十位、百位、千位和万位。只要从左到右把每个数字读出来,并在后面加上万、千、百、十就可以了,只是需要注意,最后一个数字不要读‘个’。所以,23456读作二万三千四百五十六。”

唐僧又写出:130567。孙悟空马上说:“这太容易了,读作十三万零千五百六十七。”唐僧又摇了摇头,说:“遇到0,要特别注意,当一串数中间有0时,只要读零就可以了,它后面的数位不要读出来。所以这个数应该读作十三万零五百六十七。”

第三个数是120034。沙和尚想了想说:“应该读作十二万零零三十四。”唐僧叹了口气,说:“如果一串数中有连续的几个零,读一个就可以了。所以这个数要读成十二万零三十四。徒儿们,你们的数学都学得不太好,还得继续努力呀,真经暂时不能传给你们呀!”

数字兄弟

有一天,数字0和5俩兄弟一起出去玩。

0弟弟说:“咱们一起拍张合影吧?”

5哥哥说:“好啊。”

“+”号听到了,说:“我来帮你们拍照!”

于是,它们便忙了起来,“+”号把它们按不同的位置拍了两张,就送到“=”号彩印冲洗店。

照片洗出来后,“=”号伸手向0和5要钱,它们俩呆呆地望着对方,自言自语说给多少呢?

“=”号得意的说:“50呗,你看你们俩“5”在前,“0”在后站在一起不就是50吗?”

0和5想了想说:“那要“0”在前,“5”在后站在一起是05,那给多少钱啊?”

这时“+”号走了过来,“=”号老弟你错了,任何数和0相加都等于任何数,不存在位置关系,所以5+0、0+5都等于5,你应该收它们5元钱才对呀!”

小朋友,你明白了吗?

“摸球游戏”与概率论

大约十年前,在北京西直门立交桥附近,曾有一个摆摊摸球的人。当时围观的人们觉得很新鲜,曾有很多人参与摸球。现在看来,这不过是一个小型的赌博游戏罢了。

这个游戏的规则很简单:他先摆出了12个台球一般大小的小球,其中有6个红色球和6个白色球。当着观众的面,他把所有12个色球装进一个普通的布袋中,然后怂恿大家来摸。怎么个摸法呢?就是从这个装有12个球的布袋中,随便摸出6个球来,看看其中有几个是红球,有几个是白球。当然,摸球者只能把手伸进袋口中把球一个一个地“掏出来”,而不能打开袋口看着摸。

这位摆摊的人,还设立了各种情况下的奖励方案,大致是这样的:如果谁有幸摸出了“6个红球”或者“6个白球”,那么摸者可以得到3元钱的奖励;如果摸出的是“5红1白”或者“5白1红”,那么摸者可以得到2元钱的奖励;如果摸出的是“4红2白”或者“4白2红”,那么摸者可以得到1元钱的奖励;但如果摸出的是“3红3白”,对不起,摸球者必须付给摆摊者3元。

当时的围观者甚众。乍一看来,在可能出现的所有7种情况中,竟然有6种可以得到奖励,只有唯一1种情况要“挨罚”,很多人便欣然参与。

奇怪的是,“3红3白”的情况特别的多,也许摸个一、两次,能撞个大运,摸个“4红2白”或者“4白2红”,赢下寥寥几元钱,但如果连摸五次以上,几乎是必“赔”的。一天下来,最为得意的当然是那个摆摊者。

有些赔钱的人肯定会有这种疑问:“为什么摸出来的6个球,总是3红3白呢?是不是这个摆摊的人有点特异功能,施了魔法呢?”

当然不是。这是数学中的“概率”所左右的结果。

大家都知道,根据排列组合的知识,从12个球中摸出6个球,总的方法数为:

其中“6红”或者“6白”的情况,都仅有唯一的1种,按照概率论计算,就是1/924的出现概率,真是太低了,在概率论中可以算作“实际上不可能发生”的小概率事件。

容易计算出“5红1白”或者“5白1红”的情况各是:

两种情况加起来就是72种,也就是出现总概率为72/924=6/77,还不到1/11,也够低的。所以这两种情况也难得出现。

出现“4红2白”或者“4白2红”的情况各是:

两种情况加起来就是450种,也就是出现总概率为450/924=75/154,将近1/2,也就是有一半的可能性。不过这两种情况每次都只能赢回1元钱。

最后我们来看看“3红3白”的情况:

所以,摸到“3红3白”的概率,就是400/924=100/231,虽然比上面那两种情况的可能性稍低,但也是将近一半的可能性。尤其一旦摸到“3红3白”,一次就会损失掉3元钱。

根据上面的分析,我们可以得到如下结论:最有可能出现的三种情况是“3红3白”“4红2白”和“4白2红”,而且出现“3红3白”的概率接近1/2,出现“4红2白”和“4白2红”的概率都接近1/4。

也就是说,一般来讲,如果志愿者摸了四回,往往其中的两回都是“3红3白”(共赔6元),另外各有一次是“4红2白”和“4白2红”(共赚2元)。算下总帐,4次摸球的结果,一般要赔进4元钱。

看来,参与摸球的人多半是会赔本的,而且摸的次数越多,赔出的钱也就越多。

看来,这位摆摊者巧妙地利用了概率论,成为不变的赢家。以后再遇到这种人,大家可千万不要上当啊!

对数的创立

对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(1550-1617年)男爵。

在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。

当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。

那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子:

0、1、2、3、4、5、6、7、8、9、10、11、12、13、14……

1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384……

这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。

比如,计算64256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64256=16384。

纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?

经过多年的探索,纳皮尔男爵于1614年出版了他的名着《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。

所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的着作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国着名的数学家、天文学家拉普拉斯(PierreSimonLaplace,1749-1827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。

大战食数兽

一天数学王国突然闯进一个三条腿怪兽,吓得数字公民纷纷逃走。怪兽张开血盆大口,一口吞下数24。接着它又吞吃了另一个数44。奇怪的是,怪兽却没有吃数5。

数学王国最高统治者零国王连夜和数1大臣商量对策。数14首先迎战怪兽。怪兽力大无比,数14被摔昏过去。数6和数35举起弓箭,连连发射,可是一点也伤不着怪兽。数100挺枪冲向怪兽。怪兽张开大嘴,一口吃了数100,吓得数6、数35扶起数14赶紧逃窜。

第二天,聪明的数1大臣想出了一个法子,派数60去迎战怪兽。数60见怪兽冲了过来倒地一滚,变成了数2和数30,因为230=60。怪兽一见掉头跑了。数60连忙又变成数12和数5,因为125=60。怪兽见状掉转头又冲了过来。这时侦探数7回来报告说:“怪兽名叫食数兽。为了长出第4条腿,它专吃含因数4的数。”

零国王和数1大臣连夜商量对策,第二天,零国王亲自出战与怪兽大战起来。

怪兽吞下零国王,倒地就死了。不一会儿,零国王领着几个数字公民全走了出来。

原来零国王钻进怪兽肚子里,和这三个数作了连乘,结果都变成了0,怪兽就饿死了。众人听了,齐声称赞零国王既勇敢又聪明。

华罗庚与帽子

出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师。

少年时期的华罗庚就特别爱好数学,但数学成绩并不突出。19岁那年,一篇出色的文章惊动了当时着名的数学家熊庆来。从此在熊庆来先生的引导下,走上了研究数学的道路。晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生!

华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物。下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:

有位老师,想辨别他的3个学生谁更聪明。他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色。

3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子。

聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题。因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽。但他踌躇了一会,可见我戴的是白帽。

这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了。假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子。看到这里,同学们可能会拍手称妙吧。

后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解。他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃。

用字母代替数

幼儿学数,总是和量连在一起的。比如,2只苹果,3支铅笔。到了小学,已经不满足于具体的量了,而喜欢学比较抽象的数。这时,2不仅可以表示“2只苹果”,还可以表示“2本书”、“2个小孩”等等,它的意义更广泛了。所以,从量到数,是认识上的一次飞跃。

到了初中,我们又不满足于具体的数了,需要进一步的抽象化。

老奶奶给小孙孙讲故事,常喜欢这样开头:

“从前……”

小孙孙听故事时,感兴趣的是故事的情节,而并不很关心故事发生的具体时间,从来也不追问:

“从前——是哪一年,哪一月?”

老师对同学进行文明礼貌教育:

“在公共汽车上见到老人应该让座。”这意思大家一听就明白,从来没人追问:

“这老人是70岁吗?”

“是80岁吗?”

在这里,重要的是说明要注意礼貌这件事,至于老人具体多大年纪,不必去追究。

同类推荐
  • 元曲(语文新课标课外必读第七辑)

    元曲(语文新课标课外必读第七辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 轻松管出好课堂

    轻松管出好课堂

    本书分为三篇,由近70篇文章组成,结合中国教育的实际情况,对美国教育的各方面进行了分析和点评。
  • 汽车检测技术

    汽车检测技术

    随着我国汽车保有量的不断上升,以及现代技术在汽车上的应用,社会对汽车检测及维修人员的需求不断增加。根据教育部有关文件精神,江苏科技出版社召开有关会议,讨论教材的编写工作,《汽车检测技术》是在汽车不解体的情况下,阐述如何运用各种检测设备检测汽车技术状况的一门专业课程。
  • 中外哲理美文精选(语文新课标课外必读第十一辑)

    中外哲理美文精选(语文新课标课外必读第十一辑)

    本书精选了数百篇极具思想价值的哲理美文,呈现了大师们的深刻人生感悟,使读者感受到文化的熏陶和人文的关怀。
  • 考生们最需要的直线学习书

    考生们最需要的直线学习书

    在日本,每年有数万精英参加号称“全球最苛刻”的司法考试,最后只有少部分人能过关,这少数幸运者中就有相当一部分考生来自伊藤培训学校,其校长伊藤真因此被誉为“考试之神”。本书介绍的就是由校长独创的“伊藤学习术”,这套“从目标回溯”的已经过反复验证的高效学习法,专为通过考试而设计,给你真正的上榜力!
热门推荐
  • 世界古代著名作品(世界文学百科)

    世界古代著名作品(世界文学百科)

    本套书系共计24册,包括三大部分。第一部分“文学大师篇”,主要包括中国古代著名作家、中国现代著名作家、世界古代著名作家、亚非现代著名作家、美洲现代著名作家、俄苏现代著名作家、中欧现代著名作家、西欧现代著名作家、南北欧现代著名作家等内容;第二部分“文学作品篇”,主要包括中国古代著名作品、中国现代著名作品、世界古代著名作品、亚非现代著名作品、美洲现代著名作品、俄苏现代著名作品、西欧现代著名作品、中北欧现代著名作品、东南欧现代著名作品等内容;第三部分“文学简史篇”,主要包括中国古代文学简史、中国近代文学简史、中国现代文学简史、世界古代文学简史、世界近代文学简史、世界现代文学简史等内容。
  • 九幽冥使之问路

    九幽冥使之问路

    人数:400人;可开明中级佣兵团使命,佣兵雕塑血量为40000;佣兵团分歧于帮派,没有大范围的驻地,只要个小型的姑且会所。并且,坚固度比之帮派也是远不能及的。所以佣兵团的伤害性是很大的,如果没有充足的气力和人力,是很能成长强大起来。凡是来讲,建城有两种方法,第一种便是经由过程进级到顶级帮派后可以请求提升都会。也能够由三个以上高档帮派联手请求提升都会。第二种便是经由过程使用建城令,直接建城。这类方法快速有用,但出发点却不如由帮派提升下去的都会牢固,这点想必大师都明白,究竟结果新建都会,一切都是从零起头。人数:40000人;可开明顶级帮派使命体系,……
  • 傻子王爷无情妃

    傻子王爷无情妃

    一只毒蝎子,彻底断送了她年轻的生命!别人只知道,那个软弱没主见的女人被迫嫁给一个痴傻呆闷的七皇子。殊不知,她早已不再是“她”!面对痴傻只会憨笑的美男,她气愤难填!你傻,本美女就医好你,谁知医好后,遭到嫌弃,却换来一纸休书,气愤之下,她恨不得与他同归于尽……
  • 春生恋

    春生恋

    或许你觉得一见钟情这种事很荒诞,或许你觉得不敢表白的男生是孬种,或许你觉得无法承担责任的男人是混蛋,可是他就是那样的人。谢天翔,胆小,一见钟情,表白却一推再推,可是他所经历的让他慢慢成熟,慢慢的……
  • 30天精通心理学全集

    30天精通心理学全集

    揭开人类心灵的神秘面纱,把专业知识搬进生活舞台,让每个人感受心理学的神奇。不管你是想通过阅读学习知识,还是想从中寻找心理问题的解决方法,抑或是想更深刻地认识自己、了解他人,本书都会给你一个满意的答复。学习它,把握它,运用它,为我们的生活增光添彩。
  • 实习老公

    实习老公

    《实习老公》(单身公害之白羊座)“你是我的,只有我不要的,没有我要不到的!”精明强势的女主,百般手段,终将男主纳入羽翼,调教出贴心老公。女主:北堂烟,北堂集团总裁,精明,强势,商业天才,一个天生就注定被追随的存在,无数神话的缔造者。男主:炎烈,北堂集团实习生,阳光,帅气,成熟内敛,皇家学院首席生的他拥有众多的追求者,平日里洁身自好,却仍旧一不小心将自己的清白葬送在了一个“公害”手中。她第一眼看到他的照片时,就已经注定了他们之间的结局!这就是属于她的霸道与强势!当他放弃一切坚持,与她在一起时,他就知道他这一生终究是败给了这个女人,霸道却也温柔的女人。强势的她对他一见钟情,虽然有那么点小麻烦,但对于她来说都不是问题,她想要的还没有得不到的!……《溺爱》(单身公害之处女座)她是医学界的奇葩,闻名世界的心理医生,上百家连锁医院的院长!她的世界完美无瑕,不沾染任何灰尘,她不喜欢的东西统统毁灭。只不过,完美的人生遇到了不算完美的爱情,但却也成就了梦幻中的爱情童话。一个男人,年过三十,相貌普通,被妻子抛弃带着有轻微弱智的孩子在工地打工,皴裂的双手,沧桑的眼神,懦弱的气息,似乎在彰显着一个失败的人生。只是,这个平凡到不能再平凡的男人却有着一个不平凡的奢望,他爱上了一个不该爱的人。一个几近完美的女人,一个普通到让人厌恶的男人。一个有着洁癖的女人,一个天天生活在肮脏工地的男人。她从未想过她会爱上这样一个男人。他也从未想过她会爱上他!她用一种看着狗的眼神看着他,挑战人类心理承受的极限。他用一种看着神的眼神看着她,听从她的一切安排!……单身公害系列是以十二个不同星座的女人为主题写的系列文,这些女人美丽且充满智慧,拥有权势,同时也拥有爱情,都市一对一专情文,希望朋友们喜欢!
  • 一纸婚约:天才宝腹黑爹

    一纸婚约:天才宝腹黑爹

    杀他老婆,灭他威风,她带着他儿子落跑。8年后,她带着天才儿子回国,他已有未婚妻。“孩子给我,否则代价你付不起。”“姑娘吃荤吃素不吃亏,想要孩子多是女人给你生。”宝贝笑眯眯说,“想当我爹地,就看看你有没有这本事,否则代价你也付不起。”父子第一次网上见面,宝贝装人妖诱惑爹地,“求宠爱。”爹地大人淡定回,“我对对象有点挑。”
  • 重生俏公主

    重生俏公主

    一世昏然,最后一杯毒酒了残生,却有幸重回到十四岁那年。彼时家族还在,幼妹尚存,一切的悲剧和灾难都还没有发生。凤薇想,今生她一定不要再重蹈前世的覆辙,她要挽回家族倾颓的命运,护下幼妹性命,还要为家国的父老,谋一个平稳安定的未来!未来的道路荆棘满地,她愿手持利剑,一人喁喁独行,只为谋取一个温暖的锦绣明天!凤有翎羽,命之所系,触之者死!然而漫漫长路,她却遇见了一个愿一心一意护持她的人,是顺从心意还是坚定意志?家国身份,恩怨纠葛,她满目苍茫,又该何去何从?新书《纨绔乐妃:至尊鬼帝霸宠妻》发布,欢迎围观收藏~~~
  • 干物妹也要当漫画家

    干物妹也要当漫画家

    干物女是已经放弃恋爱,凡事都说“这样最轻松”的年轻女孩。主角的名字叫作安忆,她很喜欢安逸的生活。为了安逸的生活,穿越到平行世界的她,只能拿起画笔,赚取足够金钱供她死宅,等什么时候赚够了钱……那就尽情地休刊吧。什么?无数粉丝读者暴动了?还破口大骂坑王之王?诶诶诶……那该怎么办?什么嘛,原来只要爆照就可以平息读者的怨念啦,真是安逸呢~~~
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。