登陆注册
3237100000005

第5章

人们从认识分数到研究分数,是从单位分数开始的。单位分数就是形如1n(n1的正整数)的分数。在3700多年前埃及的纸草书上,已经认识到:所有分子为2、分母为2n+1(n为2到49的正整数)的分数,可以分解为一些不相同的单位之和。如:

27=14+128

297=156+1679+1776

而通过这种表示法可以进行任何分数运算:如:

521=121+221+221

=121+114+142+114+142

=121+214+242

=121+17+121

=17+221=17+114+142

巴比伦人也使用六十进位的分数,即分母是60、602、603的分数。在很长一段时间内,欧洲人将分数运算视为畏途。

中国是世界上较早对一般分数进行研究的国家。公元前5世纪的《考工记》中,就有“十分之寸之一为一枚”的记载,即110寸等于一分。西汉时期《周髀算经》中,已经有了更复杂的分数运算。公元1世纪(东汉时期)的数学家专着《九章算术》中,专列“方田”一章,介绍通分、约分、比较分数大小的方法,以及有关加、减、乘、除运算的法则。这些知识与现代采用的方法基本相同,比印度领先500多年,比欧洲早1400多年。

负数的引入

今天人们都能用正负数来表示相反方向的两种量。例如若以海平面为0点,世界上最高的珠穆朗玛峰的高度为十8848米,世界上最深的马里亚纳海沟深为-11034米。在日常生活中,则用“十”表示收人,“-”表示支出。可是在历史上,负数的引人却经历了漫长而曲折的道路。

古代人在实践活动中遇到了一些问题:如相互间借用东西,对借出方和惜人方来说,同一样的东西具有不同的意义。分配物品时,有时暂时不够,就要欠某个成员一定数量。再如从一个地方,两个骑者同时向相反的方向奔驰,离开出发点的距离即使相同,但两者又有不同的意义。久而久之,占代人意识到仅用数量来表示一事物是是不全面的,似乎还应加上表示方向的符号。为了表示具有相反方向的量和解决被减数小于减数等问题,逐渐产生了负数。

中国是世界上最早认识和应用负数的国家。早在二千年前的《九章算术》中,就有了以卖出粮食的数目为正(可收钱),买入粮食的数目为负(要付钱);以入仓为正、出仓为负的思想。这些思想,西方要迟于中国八九百年才出现。

无理数的风波

无理数就是不能表示为整数或两整数之比的实数,如2、π等等。这些数不像自然数或负数那样,可在实际生活中直接碰到,它是在数学计算中间接发现的。

人们发现的第一个无理数是2。据说,它的发现还曾掀起一场巨大的风波。古希腊毕达哥拉斯学派是一个研究数学、科学、哲学的团体,他们认为一切数都是整数或者整数之比。有一个名叫希帕索斯的学生,在研究1和2的比例中项时(如果1:x=x:2那么x为1和2的比例中项),左思右想都想不出这个中项值。后来,他画一边长为1的正方形,设对角线为x,于是x2=12+12=2。他想,x代表正方形对角线长,而x2=2。他想,那么x必定不能是整数,那么x会不会是分数呢?毕达哥拉斯和他的学生们绞尽脑汁也找不到这个数。

这样,如果x既不是整数又不是分数,它是什么样的数呢?希帕索斯等人认为这必定是一个新数。这一发现,使得毕达哥拉斯等学派的观点动摇了,从而导致了西方数学史上的第一次“数学危机”。而希帕索斯本人因违背了毕达哥拉斯学派的观点而受到处罚,被扔到大海里淹死了。

无理数的发现,使数的概念又扩大了一步。

神秘的9

爱因斯坦出生在1879年3月14日。把这些数字连在一起,就成了1879314。重新排列这些数字,任意构成一个不同的数(例如3714819),在这两个数中,用大的减去小的(在这个例子中就是3714819-1879314=1835505),得到一个差数。把差数的各个数字加起来,如果是二位数,就再把它的两个数字加起来,最后的结果是9(即1+8+3+5+5+0+5=27,2+7=9)。

哥白尼的生日是1473年2月19日,牛顿的生日是1642年12月25日,高斯出生于1777年4月30日,居里夫人出生于1867年11月7日,只要按照上面的方法去计算,最后一定都得到9。实际上,把任何人的生日写出来,做同样的计算,最后得到的都是9。

把一个大数的各位数字相加得到一个和;再把这个和的各位数字相加又得到一个和;这样继续下去,直到最后的数字之和是个一位数为止。最后这个数称为最初的那个数的“数字根”。这个数字根等于原数除以9的余数。这个计算过程,常常称为“弃九法”。

求一个数的数字根,最快的方法是在加原数的数字时把9舍去。例如求385916的数字根,其中有9,而且3+6,8+1都是9,就可以舍去,最后只剩下5,就是原数的数字根。

利用弃九法,可以检验很大数目的加减乘除的结果。例如a-b=c,为了检验结果c,用a的数字根减去b的数字根(如果前者较小就加上9),看看差数是否对得上c的数字根。如果对不上,那么前面的结果肯定是算错了;如果对上了,那么计算正确的可能性是89。

由这些知识可以解释生日算法的奥秘。假定一个数n由很多数字组成,把n的各个数字打乱重排,就得到一个新的数n′,显然n和n′有相同的数字根,把两个数根相减就会得0。也就是说,n-n′一定是9的倍数,它的数字根是0或9。而在我们的算法中0和9本是一回事(即一个数除以9所得的余数)。n-n′=0,只有在n=n′即原数实际上没有改变时才发生;只要nn′,n-n′累次求数字所得的结果就一定是9。

稀少而有趣的完美数

已知自然数a和b,如果b能够整除a就是说b是a的一个因数,也称为约数。显然,任何自然数a,总有因数1和a。我们把小于a的因数叫做a的真因数。

例如:6,12,14这三个数的所有真因数:

6:1,2,3;1+2+3=6

12:1,2,3,4,6;1+2+3+4+6=1612

14:1,2,7;1+2+7=1014

像12这样小于它的真因数之和的叫做亏数(不足数);大于真因数之和的(如14)叫做盈数或过剩数;恰好相等的(如6)叫做完全数,也称为完美数。

古希腊人非常重视完全数。大约在公元100年,尼可马修斯写了第一本专门研究数论的书《算术入门》,其中写道:“也许是这样:正如美的、卓绝的东西是罕见的,是容易计数的,而丑的、坏的东西却滋蔓不已;所有盈数和亏数非常之多,而且紊乱无章,它们的发现也毫无系统。但是完全数则易于计数,而且又顺理成章……它们具有一致的特性:尾数是6或8,而且永远是偶数。”

现在数学家已发现,完全数非常稀少,至今人们只发现29个,而且都是偶完全数。前5个分别是:6,28,496,8128,33550336。

经过不少科学家的研究,现在已经发现,假如数2n-1,是素数,那么数2n-1·(2n-1)就一定是完全数,其中的n也同样是素数。为此,数学家就用英文Prime(素数)的第一个字母p代替n,还把形如2p-1的素数叫“默森尼数”。但是,对于下面两个问题:“偶完全数的个数是不是有限的?”“有没有完全数?”数学家到现在还没有解决。

完全数有许多有趣的性质,例如:

1.它们都能写成连续自然数之和:

6=1+2+3,28=1+2+3+4+5+6+7,496=1+2+3+4+……+31,8128=1+2+3+4+……+127;

2.它们的全部因数的倒数之和都是2。

11+12+13+16=2

11+12+14+17+114+128=2

11+12+14+18+116+131+162+1124+1248+1496=2

亲和的友好数

友好数又叫亲和数,它指的是这样的两个自然数,其中每个数的真因数之和等于另一个数。

毕达哥拉斯是公元前6世纪的古希腊数学家。据说曾有人问他:“朋友是什么?”他回答:“这是第二个我。正如220和284”为什么他把朋友比喻成了两个数呢?原来220的真因数是1,2,4,5,10,11,20,22,44,55和110,加起来得284;而284的真因数是1,2,4,71,142,也起来也恰好是220。284和220就是友好数。它们是人类最早发现的又是所有友好数中最小的一对。

第二对友好数(17296,18416),是在二千多年后的1636年才发现的。之后,人类不断发现新的友好数。1747年,欧拉已经知道30对,1750年又增加到60对。到现在科学家已经发现了900对以上这样的友好数。令人惊讶的是,第二对最小的友好数(1184,1210)直到19世纪后期才被一个16岁的意大利男孩发现的。

人们还研究了友好数链;这是一个连串自然数,其中每个数的真因数之和都等于一个数,最后一个数的真因数之和等于第一个数。如:12496,14288,15472,14536,14264。有一个这样的链镜包含了28个数。

悬而未决的费马数

伟大的科学家同样也会犯错误,科学史上这样的事件屡见不鲜。被举为“近代数论之父”、“业余数学家之王”的17世纪法国数学家费马就是其中一个,而且他所犯的错误又恰恰是在他最擅长的数论之中。

1640年,费马发现:设Fn=22n+1,则当n=0,1,2,3,4时,Fn分别给出3,5,17,257,65537,都是素数。这种素数被称为“费马数”。由于F5太大(F5=4294967297)他没有再进行验证就直接猜测:对于一切自然数n,Fn都是素数。不幸的是,他猜错了。1732年欧拉发现:F5=225+1=4294967297=614×6700417,偏偏是一个合数!1880年,又有人发现F6=226+1=27477×67280421310721,也是合数。

不仅如此,以后陆续发现F7,F8……直到F19以及许多n值很大的Fn全都是合数!虽然Fn的值随着n值的增加,以极快的速度变大(例如1980年求出F8=1238926361552897×一个62位数),目前能判断它是素数还是合数的也只有几十个,但人们惊奇地发现:除费马当年给出的5个外,至今尚未发现新的素数。这一结果使人们反过来猜测:是否只有有限个费马数?是否除费马给出的5个素数外,再也没有了?可惜的是,这个问题至今还悬而未决,成了数学中的一个谜。

欧拉首先使用的符号i

在实数范围内,方程x2+1=0是无解的,因为任何实数,不论是正数、零还是负数,它的平方都是正数,或是零,不可能找到平方等于-1的数。

为了使这个方程有解,科学家引入了一个新的单位数i,规定它有性质i2=-1,这样的性质是任何实数都没有的。根据这性质知道它有i=±-1,这与在实数范围内负数不能开平方的结论不同,人们把-1记作i称为虚数单位,由于虚数单位i和一个实数合起来组成的数,称为虚数,如6i,10i。

符号i是数学家欧拉于1777年在他的论文中首先使用的。后来德国数学家高斯系统地运用它,并给出了有关虚数的运算法则,以后逐渐被普遍采用。有了i这个虚数单位,人们就将数从实数扩充到复数。复数的形式为a+bi,其中a、b为料数若a=0,b0,则称bi为纯虚数;若a0,b=0,那就是实数。因此可以把实数看成虚部为零的复数。

在复数范围内,人们规定了它的运算法则。设a1+b1i和a2+b2i是两个复数,有:

(a1+b1i)+(a2+b2i)=(a1+a2)+(b1+b2)i

(a1+b1i)-(a2+b2i)=(a1-a2)+(b1-b2)i

(a1+b1i)·(a2+b2i)=(a1a2-b1b2)+(a1a2+b1b2)i

a1+b1ia2+b2i=

(a1a2+b1b2)+(b1a2-a1b2)ia22+b22

例如:(25+2i)-(20-2i)

=(25-20)+(2--2)i

=5+22

勾股数和费马大定理

如果一个直角三角形的两条直角边分别是a和b斜边是c,那么a2+b2=c2,这就是着名的“勾股定理”。如果a、b、c都是正整数,就说它们是一组勾股数。一般地说,勾股数就是不定方程x2+y2=z2(1)的正整数解。

在公元前1900-前1600年的一块巴比伦泥板中,记载了15组勾股数,包括(119,120,169),(3367,3456,4825),(12709,13500,18541)这样一些数值很大的勾股数,说明当时已经有了求勾股数的某种公式。

于是人们进一步设想:在(1)中,如果未知数的次数比2大,还有没有正整数解呢?

大约在1637年,费马认真地研究了这个问题,指出,他已经证明,一个立方数不可能表为两个立方数之和,一个四次方也不可能表为两个四次方之和。一般说来,指数大于2的任何幂不可能表为两个同样方幂之和。也就是说,当n>2时,不定方程x2+y2=z2(2)没有正整数解。这就是通常人们所说的费马大定理,也叫费马最后定理。

后来,一直没有发现费马的证明。300多年来,大批数学家,其中包括欧拉、高斯、阿贝尔、柯西等许多最杰出的数学家都试图加以证明,但都没有成功,使这个大定理成了数学中最着名的未解决问题之一。现在一般认为,当初费马也并没有证出这条定理。

费马大定理也吸引了无数业余爱好者。当1908年德国哥廷根科学院宣布将发给第一个证明它的人10万马克奖金时,据说有些商人也加入了研究的行列。但由于费马大定理不可能有初等证明,因而那些连初等数论的基本内容都不熟悉的人,对此只能“望洋兴叹”了。这说明攻克世界难题,不仅需要勇气和毅力,还需要具备扎实的基础知识。

强盗的难题

强盗抢劫了一个商人,将他捆在树上准备杀掉。为了戏弄这个商人,强盗头子对他说:“你说我会不会杀掉你,如果说对了,我就放了你,决不反悔!如果说错了,我就杀掉你。”

聪明的商人仔细一想,便说:“你会杀掉我的。”于是强盗头子发呆了,“哎呀,我怎么办呢?如果我把你杀了,你就是说对了,那应该放你;如果我把你放了,你就说错了,应该杀掉才是。”强盗头子想不到自己被难住了,心想商人也很聪明,只好将他放了。

这是古希腊哲学家喜欢讲的一个故事。如果我们仔细想一想,就会明白那个商人是多么机智。他对强盗说:“你会杀掉我的。”这样,无论强盗怎么做,都必定与许诺相矛盾。

如果不是这样,假如他说:“你会放了我的。”这样强盗就可以说:“不!我会杀掉你的,你说错了,应该杀掉。”商人就难逃一死了。

下面这个例子也是有趣的。有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都能做得到。一位过路人问了一句话,使他顿时张口结舌。

这句话是:“上帝能创造一块他也举不起来的大石头吗?”请你想一想,这个教徒为什么会哑口无言?

部分也能等于整体吗?

同类推荐
  • 尼尔斯骑鹅旅行记

    尼尔斯骑鹅旅行记

    这是一套献给孩子们的书。一如它的名字“阅读一小步·成长一大步”,在孩子们开始求知的成长旅程时,一套适合他们课外阅读的好书无疑为他们的人生……
  • 让生命开出绚烂花(培养学生心灵成长的经典故事)

    让生命开出绚烂花(培养学生心灵成长的经典故事)

    在这套丛书里,我们针对青少年的心理特点,专门选择了一些特殊的故事,分别对他们在这一时期将会遭遇的情感问题、生活问题、学习问题、交友问题以及各种心理健康问题,从心理学的角度进行剖析和讲解,并提出了解决问题的方法和措施,以供同学们参考借鉴。
  • 新概念作文十六年纪念版精华范本(才女卷)

    新概念作文十六年纪念版精华范本(才女卷)

    近几年中学语文教育也在大幅度改革,许多人认为高考作文的命题和新概念作文大赛复赛题已经相当接近,这是非常好的发展趋势。正如王蒙所说,新概念由旧概念来。倡导新概念不是为了标新立异,而是想提高青年学子对作文的兴趣,告诉他们只有真实的、表达真情实感的、富有创造性和想象力的文章才是好文章。
  • 扬起风帆,向着希望远航

    扬起风帆,向着希望远航

    翻开本书,这里有古今中外各种励志故事,这些故事从努力进取、坚持学习、明确目标等多方面阐述了取得成功的途径。这些故事将像一位良师益友,告诉孩子们要成功势必要跨越很多障碍,只有重新认识自己、超越自己,才能走出身边的误区。
  • 激励青少年科学探索的故事(启发青少年的科学故事集)

    激励青少年科学探索的故事(启发青少年的科学故事集)

    本书是献给尊重科学、学习科学,创造科学的青少年的一份礼物。过去培根说:“知识就是力量。”今天我们说:“科学就是力量。”科学是智慧的历程和结晶。从人类期盼的最高精神境界讲,朝朝暮暮沿着知识的历程,逐步通向科学的光辉圣殿,是许多有志于自我发展的青少年晶莹透明的梦想!
热门推荐
  • 青少年创新教育故事全集

    青少年创新教育故事全集

    本书以挖掘和激活青少年创新潜能和创新思维为主线,以培育青少年精心挑选了200多个寓意深刻、耐人寻味的创新故事,每个故事前面配有一则精练的名人名言,后面配有精彩独到的智慧点拨,挖掘故事深层的内涵,揭示创新的内涵和方法。
  • 妖人,不给力

    妖人,不给力

    告别了天下贰里蛋疼的师徒恋,我在江湖奇谭里成了一名不甚彪悍的妖人。有一天我捡到了一个猥琐的大神,然后这只大神成了我的师父……--情节虚构,请勿模仿
  • 魔教妖女一统江湖

    魔教妖女一统江湖

    她身为魔教之主,必要之时心狠手辣,偶尔也会冷幽默。她总是一身黑衣,独断独行,一路披荆斩刺,简单来讲就是夜行侠。她独自一人一马一剑行走江湖,总而言之就是很帅很酷。(纯属虚构,切勿模仿)
  • 一诺成后:权势江山心碎

    一诺成后:权势江山心碎

    一场穿越造就了她一身绝学!只为一个承诺,坐上皇后之位!从那一刻开始,一次一次卷入江湖是非;红瓦房内深宫争斗又是如何伤透人心!背叛,利用,嗜血,控情,控心……何痛,何用……终究逃脱不了宿命的纠缠摆布!倾国倾城如她,多少人为她舍命,因她丧命;命运的玩笑,让一个天真无忧的女人则样的被迫改变!他冷情冷意,负手天下却独为她心动;江山,美人,权势……独揽有何不可!因她,一怒震江山又有何妨!情真,爱亦真!冥冥之中,爱恨血仇早已注定;一次一次心碎,深陷其中的何止一人?不归路上,爱恨情仇,如何取舍……【穿越空间界限,遇你洗尽铅华,若是有缘,我们下半生再遇】
  • 碧海青龙传系列五

    碧海青龙传系列五

    十万年前的洪荒之战,无数强者陨落天际,踏入轮回;十万年后,他们的转世逐一出现,当年的暗中布局,都渐渐地浮出水面;看似平静的人间界,终于再起波澜,大唐的烟尘,掩不住历史的脚印,唐朝的官场、江湖逐一出场,无数英杰也逐一隆重登场;但所有人,都只是一个人的陪衬……
  • 都市巨灵神

    都市巨灵神

    你是赌神?很牛么?我有世界上最强大的千术—超级记忆力,在我面前你就是个渣。你是象人族第一高手?力量强大到无人能比?我笑了,你居然和巨人比力量。你还会捡漏?用得着这么麻烦么?我就算是地上随便捡块石头,都能卖上十万八万的,咱靠的不是眼力,咱靠的是面子,我说它是价值连城的玉石,谁敢说不?失恋男陈大胜意外获得上古巨灵族的传承,成为地球上唯一一个巨灵族后裔,展开了华丽的逆袭。
  • 巧手宴客菜

    巧手宴客菜

    《美食天下(第1辑):巧手宴客菜》中宴客菜既要吃到美味,又要吃到新意,那就需要几道拿手菜亮相餐桌,跟巧手学手艺,让您的厨艺快速升级,美味菜品好吃又有新意,朋友们会一抡而光;众宾客前大显身手,好手艺让人拍手叫绝,希望《美食天下(第1辑):巧手宴客菜》能给您和您的家人带去健康和幸福。
  • 九元狂尊

    九元狂尊

    神秘的身世,超强的天赋,滔天的仇恨,不屈的命运,如何一层层去解开那些看似无解的谜团?如何一点点从一个废柴修炼到巅峰?如何一步步走上自己的复仇道路?又是如何从一颗棋子变成掌棋人?
  • 危险的南迁之旅(小猪弗莱迪)

    危险的南迁之旅(小猪弗莱迪)

    《小猪弗莱迪》系列童话故事书每册都是一个精彩独立的故事。或是迷案重重、悬疑跌宕的侦探故事,或是意外横生、步步惊心的冒险故事;或是斗智斗勇、充满惊险的间谍之战;或是想像奇特、笑料十足的太空旅行……
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。