登陆注册
2830500000003

第3章 完全数之谜

公元前3世纪时,古希腊数学家在对数的因数分解中,发现了有的数的真因数之和彼此相等,于是诞生了亲和数;而有的真因数之和居然等于自身,于是发现了完全数。6是人们最先认识的完全数。

发现完全数

研究数字的先师毕达哥拉斯发现6的真因数1、2、3之和还等于6。

古希腊哲学家柏拉图在他的《共和国》一书中提出了完全数的概念。

约公元前300年,几何大师欧几里得在他的巨著《几何原本》第九章最后一个命题首次给出了寻找完全数的方法,被誉(誉(yù):名誉,称赞。)为欧几里得定理:“如果2n-1是一个素数,那么自然数2n-1(2n-1)一定是一个完全数。”并给出了证明。

公元1世纪,毕达哥拉斯学派成员、古希腊著名数学家尼可马修斯在他的数论专著《算术入门》一书中,正确地给出了6、28、496、8128这四个完全数,并且通俗地复述了欧几里得寻找完全数的定理及其证明。

神秘的第五个完全数

完全数在古希腊诞生后,吸引着众多数学家和数学爱好者像淘金般去寻找。可是,一代又一代人付出了无数的心血,第五个完全数没人找到。

直到1202年才出现一线曙光。意大利的斐(斐:fěi。)波那契,青年时随父游历古代文明的希腊、埃及、阿拉伯等地区,学到了不少数学知识。他才华横溢,回国后潜心研究所搜集(搜集(sōují):到处寻找(事物)并聚集在一起。)的数学,写出了名著《算盘书》,成为13世纪在欧洲传播东方文化和系统将东方数学介绍到西方的第一个人,并且成为西方文艺复兴前夜的数学启明星。斐波那契没有放过完全数的研究,他经过推算宣布找到了一个寻找完全数的有效法则,可惜没有人共鸣,成为过眼烟云。

1460年,有人偶然发现在一位无名氏的手稿中,竟神秘地给出了第五个完全数33550336。这比起第四个完全数8128大了4000多倍。跨度如此之大,在计算落后的古代可想发现者之艰辛了,但是,手稿里没有说明他用什么方法得到的,又没有公布自己的姓名,这更使人迷惑(迷惑(míhuò):辨不清是非;摸不着头脑,使迷惑。)不解了。

不平凡的研究历程

16世纪意大利数学家塔塔利亚小时曾被法国入侵者用刀砍伤舌头,落下了口吃的疾患,后来靠自学成为一位著名数学家。他研究发现:当n=2和n=3至39的奇数时,2n-1(2n-1)是完全数。

17世纪“神数术”大师庞格斯在一本洋洋700页的巨著《数的玄学》中,一口气列出了28个所谓“完全数”,他是在塔塔利亚给出的20个的基础上补充了8个。可惜两人都没有给出证明和运算过程,后人发现其中有许多是错误的。

1963年,数学家克特迪历尽艰辛终于证明了无名氏手稿中第五个完全数是正确的,同时他还正确地发现了第六个和第七个完全数216(217-17)和218(219-1)但他又错误地认为222(223)-1、228(229-1)和236(237-1)也是完全数。这三个数后来被大数学家费马和欧拉否定了。

1644年,法国神甫兼大数学家梅森指出,庞格斯给出的28个“完全数”中,只有8个是正确的,即当n=2,3,5,7,13,17,19,31时,2n-1(2n-1)是完全数,同时又增加了n=67,127和257。

在未证明的情况下他武断地说:当n≤257时,只有这11个完全数。这就是著名的“梅森猜测”。

“梅森猜测”吸引了许多人的研究,哥德巴赫认为是对的;微积分发现者之一的德国莱(莱:lái。)布尼兹也认为是对的。他们低估了完全数的难度。

1730年,被称为世界四大数学家雄狮之一的欧拉,时年23岁,正值风华(风华(fēnɡhuá):风采和才华。)正茂。他出手不凡,给出了一个出色的定理:“每一个偶完全数都是形如2n-1(2n-1)的自然数,其中n是素数,2n-1也是素数”,并给出了他一直没有发表的证明。这是欧几里得定理的逆理。有了欧几里得与欧拉两个互逆定理,公式2n-1(2n-1)成为判断一个偶数是不是完全数的充要条件了。

欧拉研究“梅森猜想”后指出:我冒险断言:每一个小于50的素数,甚至小于100的素数,使2n-1(2n-1)是完全数的仅有n取3,5,7,13,17,19,31,41,47,我以一个优美的定理出发得到了这些结果,我自信它们具有真实性。”1772年,欧拉因过度拼命研究使双目已经失明了,但他仍未停止研究,他在致瑞士数学家丹尼尔的一封信中说:“我已经心算证明n=31时220(231-1)是第8个完全数。”同时,他发现他过去认为n=41和n=47时是完全数是错误的。

欧拉定理和他发现的第8个完全数的方法。使完全数的研究发生了深刻变化,可是,人们仍不能彻底(彻底(chèdǐ):一直到底,深而透,也作澈底。)解决“梅森猜测”。

1876年法国数学家鲁卡斯创立了一种检验素数的新方法,证明n=127时确实是一个完全数,这使“梅森猜测”之一变成事实,鲁卡斯的新办法给研究完全数者带来一线生机,同时也动摇了“梅森猜测”。因数家借助他的方法发现猜没中n=67,n=257时不是完全数。

在以后1883—1931年的48年间,数学家发现“梅森猜测”中n≤257范围内漏掉了n=61,89,107时的三个完全数。

至此,人们前赴后继,不断另辟新路径,创造新方法,用笔算纸录,耗时两千多年,共找到12个完全数,即n=2,3,5,7,13,17,19,31,61,89,107,127时,2n-1(2n-1)是完全数。

笛卡尔曾公开预言:“能找出完全数是不会多的,好比人类一样,要找一个完全人亦非易事。”

历史证明了他的预言。

从1992年开始,人们借助高性能计算机发现完全数,至1996年才找到18个。

等待揭穿之谜

迄(迄:qì。)今为止,发现的30个完全数,统统都是偶数,于是,数学家提出猜测(猜测(cāicè):推测,凭想象估计。):存不存在奇数完全数。

1633年11月,法国数学家笛卡尔给梅森一封信中,首次开创奇数完全数的研究,他认为每一奇完全数必具有PQ2的形式,其中P是素数,并声称不久他会找到,可不仅直到他死时未能找到,而且至今,没有任何一个数学家发现一个奇完全数。这成为世界数论又一大难题。

虽然,谁也不知道它们是否存在,但经过一代又一代数学家研究计算,有一点是明确的。那就是如果存在一个奇完全数的话,那么它一定是非常大的。

有多大呢?远的不说,当代大数学家奥尔检查(检查(jiānchá):为了发现问题而用心查看;翻检查考。)过要1018以下自然数,没有一个奇完全数;1967年,塔克曼宣布,如果奇完全数存在,它必须大于1036,这是一个37位数;1972年,有人证明它必大于1050,1982年,有人证明,它必须大于10120;……这种难于捉摸的奇完全数也许可能有,但它实在太大,以至超出了人们能够用计算机计算的范围了。

对奇完全数是否存在,产生如此多的估计,也是数学界的一大奇闻!

关于完全数还有许多待揭之谜,比如:完全数之间有什么关系?完全数是有限还是无穷多个!存在不存在奇完全数?

人们还发现完全数的一个奇妙现象,把一个完全数的各位数字加起来得到一个数,再把这个数的各位数字加起来,又得到一个数,一直这样做下去,结果一定是1。例如,对于28,2+8=10,1+0=1对于496有,4+9+6。19,1+9=10,1+0=1等等。这一现象,对除6外的所有完全数是否成立?

以上这些难题,与其他数学难题一样,有待人们去攻克(攻克(ɡōnɡkè):攻下(敌人的据点)。)。

同类推荐
  • 中国地理未解之谜

    中国地理未解之谜

    人类总是充满好奇心,富有求知欲望,不仅对历史积淀的文 化知识和日益发展的科学技术具有浓厚的兴趣,而且对世界上许 许多多的未解之谜都充满了好奇心。这是人类的心理特征,也是 人类社会进步的一种基本动因。从地球到宇宙,从自然到历史, 从科学到艺术,在这许许多多的领域中,无不存在着这样或那样 的“未解之谜”。
  • 上当了别找我(好看系列)

    上当了别找我(好看系列)

    叙事艺术的时尚化表达,是王钢作品最受儿童读者欢迎的一个重要的因素。王钢小说呈现了今天儿童生活的时尚性的一面,而且用很新鲜的、具有当下气息的语言准确地表现了校园生活和儿童内心。王钢的时尚化表达,是从两个方面进行的:一是用幽默的场景和夸张而富有情感冲击力的语言来展现形象的特征。二是小说里每一个小角色的性格和语言都是很独立性的,作家给每一个孩子都画下了一幅喜剧化的脸谱。值得注意的是,王钢意识到了儿童生活时尚化的一面,将这种时尚化加以艺术的呈现,给予审美的观照,赋予爱的色彩。
  • 火神肆虐:火灾的防范与自救

    火神肆虐:火灾的防范与自救

    本系列主要内容包括“自然灾害”、“火场危害”、“交通事故”、“水上安全”、“中毒与突发疾病”、“突发环境污染”等,书中主要针对日常生活中遇到的各种灾害问题作了详细解答,并全面地介绍了防灾减灾的避险以及自救的知识。居安思危,有备无患。我们衷心希望本书能够帮助青少年迅速掌握各种避险自救技能。
  • 读书故事(影响青少年一生的中华典故)

    读书故事(影响青少年一生的中华典故)

    本书一共二十册,书中的故事具有很强的启迪性,对青少年的人生成长具有很大帮助性。
  • 兔子坡

    兔子坡

    兔子坡上要来新邻居了!小动物们既兴奋又不安,他们一边期待着崭新的好日子,一边又很担心可能出现的各种危险!
热门推荐
  • 贞观长歌:大唐未央传

    贞观长歌:大唐未央传

    一个阴谋让她们穿越到战乱的隋末,见证唐朝建立,认证贞观之治。也是那个阴谋让慕容未央知道一直以来所谓的好姐妹只不过是口蜜腹剑,重遇后接踵而来的危险和阴谋,却不知道陷害自己的原来就是一同穿越过来的好闺蜜,“只不过是换了一个模样,你便不认识我吗?”她将利剑刺进慕容未央胸膛时眼神狰狞。到底是什么样的怨恨让她一步一步逼害?什么样的男人让曾经友好的姐妹二人反目成仇?深宫之内,哪些阴谋祸害能被识破?谁能辅助君主一统天下?即使如此,万千沧桑过后,青史上又能将谁留名?
  • 冲喜之痴傻王爷代嫁妃

    冲喜之痴傻王爷代嫁妃

    一觉醒来,花朝莫名其妙的穿越了,还穿成了西临国花相府最不受宠的六小姐,一道圣旨落下,皇上选了相府小姐前往异国和亲,五小姐死活不愿,于是强逼她代嫁。只是…她不是应该嫁给东祈国的老皇帝为妃么?可眼前的这个傻兮兮的唤她为‘娘子’的小子是怎么回事?噢!原来她和亲的目的,竟然是为了给眼前这傻王冲喜啊!好吧,冲喜就冲喜,瞧着这傻王的模样,她似乎也不太吃亏!但是,她哪曾想到,自己所看到的一切都只是表象而已。那丫的简直就是个典型的人格分裂症者,人前是一只软绵绵的小肥羊,背后立马就变成一只腹黑无情的大恶狼!
  • 我们三个都是穿越来的

    我们三个都是穿越来的

    我是因为看了很多的穿越小说,也很想穿越。谁想我想想就能穿越,穿越就穿越吧,居然穿成怀孕九月的待产产妇,开玩笑嘛!人家在二十一世纪还是黄花一枚呢。这也可以接受,可是明明是丞相之女,堂堂四皇子的正牌王妃怎么会居住在这么一个几十平米得破落小院子里,她怎么混的,亏她还一身绝世武功,再是医毒双绝。哎。没关系,既然让我继承了这么多优越条件,一个王爷算得了什么?生下一对龙凤胎,居然都是穿过来的,神啊,你对我太好了吧?且看我们母子三人在古代风生水起笑料百出的古代生活吧。片段一在我走出大门时,突然转身对着轩辕心安说道:“王爷,若是哪天不幸你爱上了我,我定会让你生不如死的。”然后魅惑地一笑,潇洒地走了出去。片段二当我对着铜镜里的美人自恋地哼出不着调地歌时。“别哼了,难听死了。”一个清脆的声音响起。~~~接着一声尖叫紧跟着另一声尖叫。我用上轻功躲进了被子里.~~~"我和你一样是二十一世纪来的。”“你好,娘亲,哥哥,以后要多多指教。”来自两个婴儿的嘴里,我摸摸额头,没高烧啊。片段三“小鱼儿,我可是你孩子的爹,况且我没有写休书,你还是我的王妃。我会对你好的。”安王爷霸道地说道。“你们认识他吗?他说是你们的爹?”我问着脚边的两个孩子。“不认识,”女孩说道。“我们的爹不是埋在土里了吗?怎么他一点也不脏?”男孩问道。那个男人满头黑线。“对不起,我们不认识你。”说完拉着孩子转身就走。片段四“爹爹,这是我娘,你看漂亮吧?”南宫心乐拉着一个白衣帅哥进来问道。我无语中。“爹爹,你看我娘亲厉害吧?“南宫心馨拉着另外一个妖精似地男人走了进来。我想晕。“这才是我们的爹。”“才不是呢,这个才是”两人开始吵起来了。“我才是你们的爹。”安王爷气急地吼道。“滚一边去。”两个小孩同时说道。屋里顿时混乱之中。转头,回屋睡觉去了。推荐完结文《别哭黛玉》完结文《穿越之无泪潇湘》新文,《极品花痴》
  • 幸福之城

    幸福之城

    工作是嘉兴市中级法院的一名法官。已发表小说100万余字,散见于《小说选刊》、《中篇小说选刊》、《中国作家》、《江南》、《山花》、《百花洲》等期刊。
  • 佛罗伦萨不晴天(出版已上市)

    佛罗伦萨不晴天(出版已上市)

    实体出版名:《佛罗伦萨不晴天》七月已上市!网络连载原名:《佛罗伦萨,最后一封情书》卓越、当当、京东搜索《佛罗伦萨不晴天》即可购买。------------------------------有一个女孩叫做白心凉,她傻傻的守着一个人的名字度过了青葱美丽的年少时光。你有没有像她一样,只因为人群中的那一眼,便无法不为他在人世间彷徨。不是每一只丑小鸭都可以变成白天鹅,不是所有的灰姑娘都能够拿到仙女棒。十年,骄傲的王子,若有天你知道有人用去十年的时光去爱你,你会怎么想。*****这一次,我想写一个美丽又温暖的故事。亲爱的,你知道吗,当你真的下决心去爱一个人的时候,整个世界都会帮助你的。
  • 雷霆御天

    雷霆御天

    化九霄雷霆为己用,御九幽恶鬼为仆从,既为武者,当拳破虚空,剑斩乾坤,天道不存,则以吾道为天,缔造万古天庭!
  • 尼玛!医神你不要这么冷

    尼玛!医神你不要这么冷

    我在你不要的世界里,何苦不找个人来代替。可惜我谁劝都不听……这其实是一个阴沉医生老师带着一个迷糊医学生的故事。,我宁愿留在你方圆几里,至少能感受你的悲喜,在你需要我的时候就能陪你
  • 卡耐基语言的突破与沟通的艺术

    卡耐基语言的突破与沟通的艺术

    本书不仅仅是口才训练书,也是一本综合开发自我潜能的修炼指南。一经问世,就创造了人类出版史上一个奇迹:10年之内发行了2000多万册,被译成了几十种文字,成为世界上最受推崇的“口才指南”。本书不仅仅谈论公开演说术和所有的演讲技巧,而且还囊括推销术、谈判技巧、辩论术等内容,详细地介绍了克服恐惧、建立自信的方法,阐述了演讲口才方面的方法和技巧,旨在指导人们克服人性和心理弱点,学会语言的艺术和技巧,顺乎自然地发挥自我潜能,在各种场合下发表谈话,博得赞誉,从而获得人生和商业的成功。
  • 嫡女棣王妃

    嫡女棣王妃

    “姨娘,夫人似乎断气了~”“哼!这么一碗药都下去了,难道她还能活着不成?”“那这······”一个年纪稍长的人朝着这位称作姨娘的人示意了一下自己手中的婴儿,似乎有些犹豫,“这好歹是个男孩,现在夫人已经死了,如果姨娘把他占为己有,然后得了这府中的中馈······”“嬷嬷?!”女子也不等她的话说完,就打断了她,“你记住了,我恨死了这个女人,她的儿子,只能随着她去,我就是以后自己生不出儿子,抱养别人的,也不会要她的。把他给我扔马桶里面溺了,对外就说一出生就死了!”猩红的嘴唇,吐出来的话却是格外的渗人。嬷嬷还想说什么,动了动嘴,却是一句话也没有说,转身朝着后面放着马桶的地方走去。却是没有发现旁边地上一个穿着有些破旧的衣服的小女孩此刻正瞪大了眼睛看着她们两。这是什么情况?自己不是被炸死了吗?怎么会······于此同时,脑中不断有记忆闪现出来,她们是自己的母亲和刚出生的弟弟啊?!不行,先救人。转头看见旁边谁绣花留下的针线跟剪刀,想到自己前世的身手,拿起一根绣花针就朝着那个嬷嬷飞了过去,却在半路上掉落下来,暗骂一声,这人是什么破身体。却引得那两个人听见动静看了过来。女人阴狠的盯着她,“你居然没有死?”微微眯起眼睛,自己的前身也是被她们弄死的了,看样子她们谁也不会放过,抓起旁边的剪刀就冲了过去。随着几声惨叫声,从此以后,府中府外都传遍了她的“美名”——凤家大小姐心肠歹毒,刺伤了府中无数的人,宛如一个疯子。
  • 大唐王朝2

    大唐王朝2

    唐代,是中国历史上空前繁荣昌盛、辉煌壮丽的时代。在长达两千余年的中国封建社会发展史中,历史沿着曲折的道路向前推进,并且呈现出波浪式的前进轨迹,社会经济繁荣、文化昌盛、国家强大的唐朝是一个公认的高潮时代。唐朝是古代重要的盛世,不但在经济、文化方面的成就光辉夺目,而且在对外关系的发展也占有重要的地位。